

Version 2.0
English

Introduction

Purchase
Product identification

Congratulations on the purchase of a GPS900 Series instrument.
To use the product in a permitted manner, please refer to the detailed safety directions in the User Manual.

The type and the serial number of your product are indicated on the type plate. Enter the type and serial number in your manual and always refer to this information when you need to contact your agency or Leica Geosystems authorized service workshop. Type: \qquad
Serial No.:
The symbols used in this manual have the following meanings:

Type	Description
Important paragraphs which must be adhered to in practice as they enable	
the product to be used in a technically correct and efficient manner.	

- The RX900 controller is available as RX900 with internal memory or as RX900c with external CompactFlash card (CF card). The name RX900 and the term internal memory is used througout the manual and may also represent the RX900c and the term CF card.

Trademarks

- Windows and Windows CE are a registered trademark of Microsoft Corporation
- Bluetooth is a registered trademark of Bluetooth SIG, Inc

All other trademarks are the property of their respective owners.

Table of Contents

In this manual

Chapter			Page
PART 1 - The System			
1	Man	g, Creating, Editing Jobs	11
	1.1	Accessing Job Management	11
	1.2	Creating a New Job	13
	1.3	Editing an Existing Job	14
2	Managing, Creating, Editing Points/Data 16		
	2.1	Accessing Data Management	16
	2.2	Creating a New Point	18
	2.3	Editing an Existing Point	21
	2.4	Viewing the Data Log	25
	2.5	Point Sorting	27
	2.6	Terminology	29
3	Managing, Creating, Editing Codes/Codelists 38		
	3.1	Overview of Codelists	38
	3.2	Accessing Codelist Management	40
	3.3	Creating/Editing a Codelist	41
	3.4	Accessing Code Management	42
	3.5	Creating/Editing a Code	44
	3.6	Managing Job Codes	46
	3.7	Terminology	48

4 Managing, Creating, Editing Coord Systems 54
4.1 Overview of Coordinate Systems 54
4.2 Accessing Coordinate System Management 57
4.3 Creating/Editing a Coordinate System 59
4.4 Transformations 61
4.4.1 Accessing Transformation Management 61
4.4.2 Creating/Editing a Transformation 63
4.5 Ellipsoids 65
4.5.1 Accessing Ellipsoid Management 65
4.5.2 Creating/Editing a Ellipsoid 67
4.6 Projections 68
4.6.1 Accessing Projection Management 68
4.6.2 Creating/Editing a Projection 71
4.7 Geoid Models 72
4.7.1 Overview of Geoid Models 72
4.7.2 Accessing Geoid Model Management 73
4.7.3 Creating a Geoid Model from the Internal Memory 75
$4.8 \quad$ CSCS Models 76
4.9 Terminology 77
5 Converting Data - Copy, Export, Import 80
5.1 Copying Points Between Jobs 80
5.2 Exporting Data from a Job 82
5.3 Importing Data to a Job 87
6 Configuring the Antenna 93
7 Configuring the Codes and their Attributes 95
8 Configuring the Coordinate Quality Control 97
9 Configuring the Display Mask 99
10 Configuring the HOT Keys and the USER Menu 102
11 Configuring the Instrument Identification 104
12 Configuring the Language 105
13 Configuring the Local Time Zone 106
14 Configuring the Point Occupation Settings 107
15 Configuring the Radio Channel 109
16 Configuring the Satellite Settings 111
17 Configuring the Screen Display 113
18 Configuring the Units and Formats 116
19 Using the Tools - Activating Licence Keys 123
20 Using the Tools - Calculating with Calculator 126
20.1 Overview of Calculator 126
20.2 Using the Calculator in RPN Mode 127
20.3 Using the Calculator in Standard Mode 129
20.4 Description of Softkeys 131
20.5 Configuring the Calculator 135
21 Using the Tools - Formating Objects 137
22 Using the Tools - Transferring Objects 138
23 Using the Tools - Uploading Software 141
24 Using the Tools - Viewing Data 144
25 Understanding MapView 147
25.1 Overview of MapView 147
25.2 Configuring MapView 149
25.3 MapView Components - The Softkeys 153
25.4 MapView Components - The Screen Area 154
25.5 MapView Components - The Toolbar 155
25.6 MapView Components - The Point Symbols 156
26 Understanding HOT Keys, USER key, STATUS Key 157
26.1 The HOT Keys 157
26.2 The USER Key 158
26.3 The STATUS Key 159
26.3.1 The Status Menu 159
26.3.2 Status Satellite Information 160
26.3.3 Status Real-Time Data Input 163
26.3.4 Status Current Antenna Position 167
26.3.5 Status Battery Level and Memory Usage 169
26.3.6 Status System Information 171
26.3.7 Status Radio Information 172

PART 2 - The Applications

27 Working with COGO 174
27.1 An Overview of the Program 174
27.2 Starting the Program 175
27.3 Calculating with Inverse 178
27.4 Calculating with Intersections 180
27.5 Calculating with Lines 185
27.6 Calculating with Arcs 188
27.7 Configuring the Program 192
28 Working with Determine Coord System 193
28.1 An Overview of the Program 193
28.2 Starting the Program 198
28.3 Determining a New Coord System using the Normal Method 200
28.4 Updating an Existing Coord System using the Normal Method 208
28.5 Determining a New Coord System using the One Pt. Local. Method 209
28.6 Configuring the Program 216
29 Working with GPS Resection 217
29.1 An Overview of the Program 217
29.2 Starting the Program 218
29.3 Using the Program 219
30 Working with Reference Line 223
30.1 An Overview of the Program 223
30.2 Starting the Program 225
30.3 Measuring to a Reference Line/Arc 228
30.4 Staking to a Reference Line/Arc 233
30.5 Configuring the Program 239
31 Working with Setup Reference 242
31.1 An Overview of the Program 242
31.2 Starting the Program 243
31.3 Using the Program 244
32 Working with Stakeout 248
32.1 An Overview of the Program 248
32.2 Starting the Program 250
32.3 Staking the Points 253
32.4 Staking the Digital Terrain Model (DTM) 257
32.5 Understanding the Stakeout Icons in MapView 260
32.6 Configuring the Program 262
33 Working with Survey 266
33.1 Starting the Program 266
33.2 Surveying the Points 268
33.3 Surveying the Auto Points 271
33.4 Configuring the Program - SmartCodes 273
33.5 Configuring the Program - Setting the Logging Method 275
33.6 Configuring the Program - Setting the Display Mask 277
Appendix A Menu Tree 279
Appendix B Memory Types 282
Appendix C Directory Structure of the Memory Device 283
Appendix D Pin Assignments and Sockets 285
D. 1 RX900 285
D. 2 ATX900 GG 286

Appendix E Cables 288
Index 290

PART 1 - The System

Managing, Creating, Editing Jobs

1.1

Access

Managing jobs

The default job

Accessing Job Management

Listed are all jobs stored in the internal memory. Jobs:

- structure surveying projects.
- contain all points and codes that are recorded and stored.
- can be downloaded to LGO for viewing or for data transfer to a further program.
- can be uploaded from LGO, for example, for real-time stake out operations.
- are stored in internal memory.

A job called Default is available on RX900 after formatting the internal memory or deleting all jobs from MANAGE Jobs.

The active job is the one data is stored to. One job is always considered the active job. After formatting the internal memory, the job Default is used until a user defined job is created and selected.

1.2

Creating a new job step-by-step

Creating a New Job

Step	Description
1.	
2.	In MANAGE Jobs highlight a job. The settings of this job are applied to the new job.
3.	NEW (F2) to access MANAGE New Job.
4.	MANAGE New Job, General page Name. A unique name for the new job. The name may be up to 16 characters long and may include spaces. Input required. Creator. The person's name who is creating the new job. Input optional.
5.	PAGE (F6) changes to the Codelist page.
6.	MANAGE New Job, Codelist page Codelist. Choosing a codelist copies the codes to the job.
7.	PAGE (F6) changes to the Coord System page.
8.	MANAGE New Job, Coord System page Coord System. Choosing a coordinate system attaches it to the job. If it is not known which coordinate system to use, select Coord System: WGS 1984. All other fields on this screen are output fields. They depend on the transformation type of the selected coordinate system.
9.	STORE (F1) creates the new job and returns to MANAGE Jobs.

Editing an existing job step-by-step

Step	Description
1.	$\frac{12: 04}{\text { GPS900 }}$ Main Menu
2.	In MANAGE Jobs highlight a job to be edited. Name. Rename the job. The remaining functionality on this page is identical with the creation of a new job.
3.	DATA (F5) accesses MANAGE Data: Job Name. To view, edit and delete points stored with the job. Selected sort and filter settings apply.
4.	SHIFT LOG (F5) accesses MANAGE Data Log: Job Name. To view, edit and delete points stored with the job. Points are sorted by time in one list.
5.	PAGE (F6) changes to the Codelist page. 5. Are codes stored in the job? • If no, continue with step 7.
7.	No codes are stored in the job. MANAGE Edit Job: Job Name, Codelist page Codelist: None This default setting can be changed. Choosing a codelist copies the codes to the job.

Step	Description
8.	PAGE (F6) changes to the Coord System page. Continue with step 11.
9.	Codes are stored in the job. MANAGE Edit Job: Job Name, Codelist page Codelist. If codes had been copied from a System RAM codelist, the name of the codelist is displayed. If codes have been typed in, then the name of the active job is displayed.
ك	CODES (F4) views codes currently stored in the job.
10.	PAGE (F6) changes to the Coord System page. The functionality on this page is identical with the creation of a new job. 11.STORE (F1) stores the changes and returns to the screen from where MANAGE Edit Job: Job Name was accessed.
12.	

Managing, Creating, Editing Points/Data

2.1

Access step-by-step

Managing points

Accessing Data Management

Step	Description
1.	
2.	In MANAGE Jobs highlight a job.
3.	DATA (F5) to access MANAGE Data: Job Name.

- The points listed on the page belong to the currently active job. The order of the points depend on the active sort settings.
- Data is a generic term for points.
- Data management is the administration of data stored in the active job. This includes
- viewing data with their related information.
- editing data.
- creating new data.
- deleting existing data.
- sorting existing data.

GPS900 does not have an averaging functionality.

Points	Map\|				
Point				3D CQ	Class
0005				0.0095	MEAS
0004				0.0089	MEAS
0003				0.0096	MEAS
0002				0.0100	MEAS
0001				0.0095	MEAS
ant4				0.0000	REF
					a 介
CONT	NEW	EDIT	DEL	MORE	PAGE

```
CONT (F1)
    To accept the screen entries and continue.
NEW (F2)
    To create a point.
EDIT (F3)
    To edit the highlighted point.
DEL (F4)
    To delete the highlighted point.
MORE (F5)
```

 To display information about the codes if
 stored with any point, the time and the date
 of when the point was stored, the 3D coor-
 dinate quality, the class and the flag for
 Linework.
 PAGE (F6)
To change to another page on the screen.
SHIFT LOG (F4)

To view points and free codes stored with
the job sorted by time.
SHIFT FILT (F5)

To define sort settings.

2.2

Access step－by－step

Creating a new point step－by－step

Creating a New Point

Step	Description
1.	
2.	In MANAGE Jobs highlight a job．
3.	DATA（F5）to access MANAGE Data：Job Name．

Step	Description
1.	MANAGE Data：Job Name，Points page．
2.	NEW（F2）to access MANAGE New Point．
3.	MANAGE New Point，Coords page． Enter a point ID and the coordinates．
雨	COORD（F2）to view other coordinate types．
四	Negative geodetic coordinates are interpreted as being of the opposite hemi－ sphere or other side of the central meridian．For example，entering $-25^{\circ} \mathrm{N}$ will be stored as $25^{\circ} \mathrm{S}$ ，entering $-33^{\circ} \mathrm{E}$ will be stored as $33^{\circ} \mathrm{W}$ ．
雨	NORTH（F3）or SOUTH（F3）．Available for local geodetic or WGS 1984 geodetic coordinates when Local Lat or WGS 1984 Lat is highlighted．Changes between North and South latitude．
雨	EAST（F3）or WEST（F3）．Available for local geodetic or WGS 1984 geodetic coor－ dinates when Local Long or WGS 1984 Long is highlighted．Changes between East and West longitude．

Step	Description
L.	SHIFT ELL H (F2) or SHIFT ORTH (F2). Available for local coordinates. Changes between the ellipsoidal and the orthometric height.
5.	PAGE (F6) changes to the Code page. The setting for Thematc Codes in CONFIGURE Coding determines the availability of the subsequent fields and softkeys. - For Thematc Codes: With Codelist: The codes from the job codelist are used. Point Code. All point codes of the job codelist can be selected. The description of the code is shown as an output field. The attributes are shown as output, input or choicelist fields depending on their definition. - For Thematc Codes: Without Codelist: Codes for points can be typed in but not selected from a codelist. Code. The code to be stored with the point. A check is performed to see if a point code of this name already exists in the job. If so, the according attributes are shown. Attribute n. Up to four attribute values are available.
6.	Is Thematc Codes: With Codelist? - If yes, continue with the next row. - If no, continue with step 7.
NEW-A (F2) allows additional attributes to be created for this point code.	

Step	Description
Naser	NAME (F3) or VALUE (F3) Available for attributes for which an attribute name can be typed in. To highlight Attribute n or the field for the attribute value. The name of Attribute n can be edited and an attribute value can be typed in.
7.	STORE (F1) stores the new point entered and all associated information and returns to MANAGE Data: Job Name, Points page.
It may happen that a point with the same point ID exists in the job. In that case,	
a new point ID has to be typed in.	

Access step-by-step

Editing an existing

 point step-by-step| Step | Description |
| :---: | :--- |
| 1. | In MANAGE Data: Job Name, Points page highlight a point to be edited. |
| 2. | EDIT (F3) to access MANAGE Edit Point: Point ID.
 The visible pages on this screen depend on the properties of the point being
 edited. |
| 3. | MANAGE Edit Point: Point ID, Coords page
 It is possible to edit the point ID and for points of Class: CTRL and Class: EST also
 the coordinates. Other point related data is shown in output fields.
 R Points of Class: REF cannot be renamed. |
| Changing the point ID for a point of any class applies this new point ID to
 all other points with the same original name, regardless of class. | |
| MORE (F5) displays information about class, sub class, 3D coordinate quality, | |
| time and date of when point was stored, the instrument source and the source. | |
| COORD (F2) to view other coordinate types. | |

Step	Description
¢	SHIFT ELL H (F2) or SHIFT ORTH (F2). Available for local coordinates. Change between the option to enter an ellipsoidal or an orthometric height. Changing the height type does not edit the point.
4.	Is Class: MEAS? - If yes, continue with step 5 . - If no, continue with step 7.
5.	The edited point is Class: MEAS. PAGE (F6) changes to the Obs page.
6.	MANAGE Edit Point: Point ID, Obs page For GPS points The name of the real-time reference station from where the GPS point was measured, the name of antenna used to measure the point and the baseline values are shown in output fields. For TPS points The name of the station from where the point was measured is shown in an output field.
¢	MORE (F5) Available for TPS points. Displays the horizontal angle or the azimuth from the point to the instrument.
7.	PAGE (F6) changes to the Code page.
8.	MANAGE Edit Point: Point ID, Code page The point code can be edited. All point codes in the job can be selected. The description of the code is shown as an output field.

Step	Description The attributes are shown as output, input or choicelist fields depending on their definition.
NEW-A (F2) allows additional attributes to be created for this point code.	
	NAME (F3) or VALUE (F3) Available for attributes for which an attribute name can be typed in. To highlight Attribute n: or the field for the attribute value. The name of Attribute n can be edited and an attribute value can be typed in.
9.	I Class: MEAS and no offset point or Class: NAV? - If yes, continue with step 11. - If no, continue with step 10.
10.	IS Class: AVGE? - If yes, continue with step 13. - If no, continue with step 15.
11.	The edited point is Class: MEAS and no offset point or Class: NAV. PAGE (F6) changes to the Annots page.
12.	MANAGE Edit Point: Point ID, Annots page The comments to be stored with the point can be edited. Continue with step 15.
13.	The edited point is Class: AVGE. PAGE (F6) changes to the Mean page.
14.	MANAGE Edit Point: Point ID, Mean page

Step	Description
	All points of Class: MEAS of the same point ID are listed sorted by time. The settings in the Use column can be edited.
15.	STORE (F1) stores the changes and returns to MANAGE Data: Job Name. An edited point retains the creation value for Time. Changing coordinates of a point which has been previously used in other application programs, for example COGO, does not update the application results.
雨	It may happen that a point with the same point ID exists in the job. In that case, a new point ID has to be typed in.

2.4

Description

Access step-by-step

Viewing the Data Log

A list of all objects and free codes in the active job is displayed in order of time.

Step	Description
1.	Main Menu
2.	In MANAGE Jobs highlight a job.
3.	DATA (F5) to access MANAGE Data: Job Name, Points page.
4.	SHIFT LOG (F4) to access MANAGE Data Log: Job Name.

Viewing the data log

EDIT (F3)

To edit the highlighted point or free code.
The functionality of editing a free code is identical to the functionality of entering a
free code during a survey.

DEL (F4)

To delete the highlighted point or free code. MORE (F5)

To display information about the type of data recorded, the time and the date of when it was stored and the codes if stored with any object.

Description

Accessing Manage Sorts \& Filters, step-by-step

Managing point sorting

Point Sorting

The sort setting defines the order of the points in the active job. The stakeout filter settings define a filter for the Stakeout application program, for example to show points which are already staked or points that are still to be staked.

The sort setting is stored in the job. It is remembered after turning off the instrument.
Changing the active job does influence the sort setting for the points.

Step	Description
1.	
2.	In MANAGE Jobs highlight a job.
3.	DATA (F5) to access MANAGE Data: Job Name, Points page.
4.	SHIFT FILT (F5) to access MANAGE Sorts \& Filters.

Field	Description of Field
Sort	• Ascend Point ID, Descend Point ID, Forward Time or Backward Time. Always available. The method points are sorted by.

Accessing Manage

 Stakeout Filter, step-by-stepManaging stakeout filters

Step	Description
1.	
2.	In MANAGE Jobs highlight a job.
3.	DATA (F5) to access MANAGE Data: Job Name, Points page.
4.	SHIFT FILT (F5) to access MANAGE Sorts \& Filters.
5.	STAKE (F5) to access MANAGE Stakeout Filter.

Field	Description of Field
View	\bullet• Pts to Stakeout. Shows points not yet staked out. \bullet • Staked Points. Shows points which are already staked out. • RESET (F4) to reset the staked flag for all points of the currently active job.

An active filter for an object is indicated in MANAGE Data: Job Name by 9 located on the right hand side of the page name.

2.6

Description

Coordinate triplet

The class

Terminology

- This chapter describes technical terms related to data management.
- Some characteristics only become relevant when a GPS1200, TPS1200 or LGO job is used on GPS900.
- A measured point consists of three coordinate components - two horizontal components and one vertical component. The generic term for the three coordinate components is coordinate triplet. Depending on the class, a point ID can contain more than one coordinate triplet of the same and/or of different classes.
- The class describes the type of coordinate triplet.
- The following table shows the classes in descending hierarchical order.

Class	Characteristic	Description
CTRL	Type Instrument source	- Control points. Automatically assigned to entered points. - GPS, TPS or LGO
ADJ	Type Instrument source	- Adjusted points using the adjustment program. - LGO
REF	Type Instrument source	- Reference point received by a real-time rover - GPS, TPS or LGO
MEAS	Type Instrument source	- Measured points differentially corrected using real-time phase or real-time code. - Calculated from some application programs. - GPS, TPS or LGO

Class	Characteristic	Description
NAV	Type	• Navigated points using uncorrected code solutions of a single epoch.
	Instrument source	$\bullet \quad$ GPS

The sub class
The sub class describes certain classes in detail. It indicates the status of the position when a coordinate triplet was measured and how the coordinates were determined.

Sub class	Description	Instrument source
COGO	Indirect coordinate determination with application program COGO.	GPS or TPS
NONE	Direction is available but no coordinates. Height is available but no position coordinates.	TPS Level
TPS	Measured with distances and angles.	TPS
Fixed (Height)	Manually entered and fixed in height.	GPS or TPS
Fixed (Position)	Manually entered and fixed in position.	GPS or TPS
Fixed (Pos \& Ht)	Manually entered and fixed in position and height.	GPS or TPS
GPS Code Only	Direct coordinate determination with code solu- tion.	GPS
GPS Fixed	Direct coordinate determination with phase fixed solution.	GPS

Sub class	Description	Instrument source
GPS Float	Direct coordinate determination with autonomous solution coming from LGO.	GPS
Hidden Point	Indirect coordinate determination with hidden point measurements.	GPS or TPS
Additional sub classes for GLONASS sensors:		
GNSS Code Only	Direct coordinate determination with code solu- tion.	GPS
GNSS Fixed	Direct coordinate determination with phase fixed solution.	GPS
GNSS Float	Direct coordinate determination with autonomous solution coming from LGO.	GPS

The source
The source describes the application program or functionality that generated a coordinate triplet and the method with which it was created.

Source	Originated from application program/func- tionality	Instrument source
ASCII File	Convert Data, Import ASCII/GSI Data to Job	GPS or TPS
Arc Base Pt	COGO, Arc Calculation - Base Point	GPS or TPS
Arc Centre Pt	COGO, Arc Calculation - Centre Point	GPS or TPS
Arc Offset Pt	COGO, Arc Calculation - Offset Point	GPS or TPS
Arc Segmt Pt	COGO, Arc Calculation - Segmentation	GPS or TPS

Source	Originated from application program/func- tionality	Instrument source
Backward Brg-Dist	Hidden point measurements, Backward Bearing and Distance	GPS
Bearing-Distance	Hidden point measurements, Bearing and Distance	GPS
Chainage-Offset	Hidden point measurements, Chainage and Offset	GPS
COGO Area Divsn.	COGO Area Division	GPS or TPS
COGO Shift/Rtn	COGO, Shift, Rotate \& Scale (Manual) COGO, Shift, Rotate \& Scale (Match Pts)	GPS or TPS
COGO Traverse	COGO, Traverse	GPS or TPS
Copied Point	Convert Data, Copy points between jobs	GPS or TPS
Cross Section	Survey Cross Section on Systeml200.	GPS or TPS
Double Bearing	Hidden point measurements, Double Bearing	GPS
Double Distance	Hidden point measurements, Double Distance	GPS
GSI File	Convert Data, Import ASCII/GSI Data to Job	GPS or TPS
Hidden Point	Hidden Point, auxiliary points	TPS
Intsct (Brg Brg)	COGO, Intersection - Bearing - Bearing	GPS or TPS
Intsct (Brg Dst)	COGO, Intersection - Bearing - Distance	GPS or TPS
Intsct (Dst Dst)	COGO, Intersection - Distance - Distance	GPS or TPS
Intsct (4 Pts)	COGO, Intersection - By points	GPS or TPS
LandXML	Design to Field in LGO converting data from LandXML software to be used in the field	LGO

Source	Originated from application program/func- tionality	Instrument source
Line Base Pt	COGO, Line Calculation - Base Point	GPS or TPS
Line Offset Pt	COGO, Line Calculation - Offset Point	GPS or TPS
Line Segmt Pt	COGO, Line Calculation - Segmentation	GPS or TPS
None	No information on the source is available	GPS or TPS
RefLine (Grid)	Reference Line, staked out in a defined grid	GPS or TPS
RefLine (Meas)	Reference Line, measured	GPS or TPS
RefLine (Stake)	Reference Line, staked out	GPS or TPS
Ref Plane (Meas)	Reference Plane, measured	GPS or TPS
Ref Plane (Scan)	Reference Plane, scan	TPS
Road Runner	Road Runner	GPS or TPS
Sets of Angles	Sets of Angles	TPS
Setup (Known BS)	Setup, Known Backsight Point	TPS
Setup (Loc Rsct)	Setup, Local Resection	TPS
Setup (Ori\&Ht)	Setup, Orientation and Height Transfer	TPS
Setup (Resect)	Setup, Resection	TPS
Setup (Resect H)	Setup, Resection Helmert	GPS or TPS
Setup (Set Az)	Setup, Set Azimuth	
Srvy Auto Offset	Survey Auto Points, automatically recorded with offsets	
Stakeout	Stakeout	GPS

Source	Originated from application program/func- tionality	Instrument source
Survey	Survey, measured	TPS
Survey (Auto)	Survey Auto Points, automatically recorded	TPS
Survey (Event)	Survey, Event input	GPS
Survey (Instant)	Survey, measured with Pt Occupation: Instanta- neous in CONFIGURE Point Occupation Settings	GPS
Survey (Rem Pt)	Survey, Remote Point	TPS
Survey (Static)	Survey, measured with Pt Occupation: Normal in CONFIGURE Point Occupation Settings	GPS
Traverse	Traverse	TPS
Unknown	-	GPS or TPS
User Application	Customised application programs	GPS or TPS
User Entered	Manually entered point	GPS or TPS

The instrument source
The instrument source describes where the coordinate triplet was measured or entered. The option are GPS, TPS or LGO.

The coordinate quality Description

The Coordinate Quality is:

- computed on the rover for code solutions and phase fixed solutions.
- an indicator for the quality of the observations.
- an indicator for the current satellite constellation.
- an indicator for different environmental conditions.
- derived such that there is at least a two third probability that the computed position deviates from the true position by less than the CQ value.
- different from the standard deviation.

CQ versus standard deviation

The standard deviation as CQ would often be too optimistic. This is why the computation of the CQ in GPS900 is not simply based on the basic standard deviation algorithms. For the standard deviation, there is, statistically, a 39.3 \% probability in 2D that the computed position deviates from the true position by less than the standard deviation. This is not enough for a reliable quality indicator.
This is particularly true for low redundancy situations such as a constellation of four satellites. In such a case the RMS converges to zero and the standard deviation would show an unrealistically small value.

Computation

Root Mean Square RMS

= a posteriori of unit weight
Elements of cofactor matrix

- Reflects the influence of the different constellations of the diffraction, multipath, ionospheric satellites on the coordinate and tropospheric disturbances.
- Indicator of the measurement noise and environmental conditions. components.
\qquad

Coordinate Quality CQ

Range

For a phase fixed solution: Centimetre level
For a code solution:
From 0.4 to 5 m .

Position CQ versus height CQ

All GPS computed positions are almost twice as accurate in plan than in height. For the position determination, satellites can appear in all four quadrants. For the height determination, satellites can appear in two quadrants. This weakens the height position compared to the plan position.

Position determination with satellites appearing in all four quadrants.

Height determination with satellites appearing in two quadrants.

Managing, Creating, Editing Codes/Codelists

3.1

ふ్ర

Steps from creating to using a codelist

Overview of Codelists

It is recommended to create a codelist in LGO. A codelist can be transferred from LGO to the System RAM of the RX900 or from the PC via ActiveSync to the internal memory of the RX900.

The creating, editing and managing of codelists is explained in this chapter.

In order to use a codelist on the RX900, it must be transferred from the internal memory to the System RAM. Refer to "22 Using the Tools - Transferring Objects".
3.2

Access

Managing codelists

Accessing Codelist Management

 Main Menu

$11: 52$ MANAG						Listed are all codelists stored in the System RAM.
Codelists 区						
Name					Date	
cNone>						
codelist name			22.02 .06			To select a codelist and continue. If this screen was accessed from a choicelist, the codes from the highlighted codelist are copied to the active job. NEW (F2) To create a codelist.
					a $\hat{\text { ® }}$	EDIT (F3)
CONT	NEW	EDIT	DEL	MORE		To edit the highlighted codelist.
						DEL (F4)
						To delete the highlighted codelist.
						MORE (F5)

To display information about the creator and the date of when the codelist was created.

Creating/editing a

 codelist step-by-stepCreating/Editing a Codelist

Step	Description
1.	$\frac{12: 04}{G P S 900}$ Main Menu NEW (F2) or EDIT (F3)
2.	MANAGE New Codelist or MANAGE Edit Codelist Name. A unique name for the codelist. The name may be up to 16 characters long and may include spaces. Input required. Creator. The person's name who is creating the new codelist. Input optional.
3.	CODES (F4) accesses MANAGE Codes where codes can be created, edited or deleted.
4.	STORE (F1) stores the codelist and returns to MANAGE Codelists.
S.	

3.4

Description

Access step-by-step

Accessing Code Management

Managing codes includes:

- creating new codes,
- viewing codes with their related information,
- editing codes,
- deleting existing codes.

Step	Description
1.	
2.	In MANAGE Codelists highlight the codelist of which codes are to be managed.
3.	EDIT (F3) to access MANAGE Edit Codelist.
4.	CODES (F4) to access MANAGE Codes. This screen is described below.

Managing codes

Creating/editing a code step-by-step

Step	Description
1.	Refer to "3.4 Accessing Code Management" to access MANAGE Codes.
2.	NEW (F2) or EDIT (F3) Code. A unique name for the new code. The name may be up to 16 characters long and may include spaces. Input required. Code Desc. A detailed description of the code. This can be for example the full designation if Code is an abbreviation. Input optional. Code Type. The use of the code. On RX900, point codes can be created. Line and area code types can be displayed when editing a code from a System1200 codelist. Linework. Available for point codes. Allows a new line/area to be opened when- ever the point code is newly selected. This functionality is also available when creating codelists with the LGO codelist Management. Line Style. Available for point codes or when editing a code from a System1200 codelist. The style in which lines/areas are represented in MapView and LGO.
3.	NEW-A (F2) adds Attribute 1 as new input field for an attribute of attribute type normal and of value type text.
4.	NAME (F3) or VALUE (F3) Available for attributes for which an attribute name can be typed in. To highlight Attribute 1 or the field for the attribute value. The name of Attribute $1 ~ c a n ~ b e ~ e d i t e d ~ a n d ~ t h e ~ a t t r i b u t e ~ v a l u e ~ t o ~ b e ~ u s e d ~ a s ~ t h e ~ d e f a u l t ~ a t t r i b u t e ~ v a l u e ~$ can be typed in.

Step	Description
	Attributes of attribute type mandatory or fixed and of value type real or integer must be created in LGO.
5.	Up to four attributes can be created. Atribute names that have already been typed in cannot be edited in a job codelist.
IS another attribute to be created? - If yes, repeat step 4. - If no, continue with step 6.	
6.	STORE (F1) adds the new code and any associated attributes or stores the changes to the System RAM codelist and returns to the screen from where this screen was accessed.
A new code can also be created within an application program. In this case, the new code is added to the job codelist.	

3.6

Description

Access step-by-step

Managing Job Codes

To view and edit all codes currently stored in the job. The functionality of this screen is mainly the same as for MANAGE Codes. For simplicity, the functionality which is different from MANAGE Codes is explained here.

Available for jobs which have a codelist attached.

Step	Description
1.	
2.	In MANAGE Jobs highlight a job to be edited.
3.	EDIT (F3) to access MANAGE Edit Job: Job Name.
4.	In MANAGE Edit Job: Job Name, PAGE (F6) until the Codelist page is active.
5.	CODES (F4) to access MANAGE Job Codes.

Managing job codes

CONT (F1)
To accept the screen entries and continue. NEW (F2)

To create a new code. EDIT (F3)

To edit the highlighted code. Accesses MANAGE Edit Code where new attributes can be added to a code and line styles can be changed.

Editing a job code

3.7

Description

Code

Terminology

This chapter describes technical terms related to codes and codelists.
The values for codes and attributes are case sensitive. For example the code Tree is not the same as the code TREE.

Description

A code is a description which can be stored with an point or alone.

Structure of codes

Code types

The code type defines how a code can be used. It is possible to create a code of the same name but of different code types in LGO. Example: The code Oak can exist with code type point code and with code type free code.
Point code:
To record a code directly with a point. This is thematical point coding. Point codes can be created on RX900.
Free code:
To record a code based on time in between points.

Description

The use of attributes allows additional information to be stored with the code. Up to twenty attributes can be related to one code. Attributes are not compulsory.

Structure of attributes

Attribute types

The attribute type defines the input requirements for the attribute.
Normal: \quad An input for the attribute is optional. The attribute value can be typed in the field. New attributes with this attribute type can be created in LGO or on the RX900.
Mandatory: An input for the attribute is compulsory. The attribute value must be typed in the field. New attributes with this attribute type can be created in LGO.
Fixed: \quad The attribute value is a predefined default which is displayed but cannot be changed in the field. This attribute value is automatically attached to the code. New attributes with this attribute type can be created in LGO.

Attribute value types

The attribute value type defines which values are accepted as input.
Text: \quad Any input for the attribute is interpreted as text. New attributes with this attribute value type can be created in LGO or on the RX900.
Real: An input for the attribute must be a real number, for example 1.23. New attributes with this attribute value type can be created in LGO.
Integer: \quad An input for the attribute must be an integer number, for example 5. New attributes with this attribute value type can be created in LGO.

Attribute value regions

The attribute value region defines if the attribute values must be selected from a predefined list.
None:
An input for the attribute must be typed in. New attributes with this attribute value region can be created in LGO or on the RX900.
Range: An input for the attribute must fall within a predefined range. New attributes with this attribute value region can be created in LGO.

Choicelist: An input for the attribute is selected from a predefined list. New attributes with this attribute value region can be created in LGO.

Example

Code	Attributes	Attribute value type	Attribute value region	Example for the attribute value region
Birch	Height	Real	Range	$0.5-3.0$
	Condition	Text	Choicelist	Good, Dead, Damaged
	Remark	Text	None	-

Codelist

Description

A codelist is a collection of codes that can be used to describe surveyed points in the field.
Elements of a codelist

- Code
- Attributes

Structure of a codelist

Structure	Example

Codelist types

System RAM codelist: Job codelist:

A codelist stored in the System RAM of the RX900.
The collection of codes contained within the currently active job.

Description

Elements of a coordinate system

Managing, Creating, Editing Coord Systems

Overview of Coordinate Systems

A coordinate system:

- consists of up to five elements.
- allows the conversion from WGS 1984 geodetic or cartesian coordinates to, local cartesian, geodetic or grid coordinates and back.
- can be attached to jobs.
- can be manually defined.
- can be computed in the field.
- can be downloaded to LGO.
- can be uploaded from LGO.

All GPS surveyed points are always stored as WGS 1984 geodetic coordinates regardless of the coordinate system being used. Using a different coordinate system converts the coordinates displayed on the screen, but does not convert and restore the coordinate values in the database DB-X.

One coordinate system can be attached to a job at one time. This coordinate system remains attached to the job unless it is changed.

The five elements which define a coordinate system are:

- a transformation
- a projection
- an ellipsoid
- a geoid model
- a Country Specific Coordinate System model

a) WGS 1984 cartesian: X, Y, Z
b) WGS 1984 ellipsoid
c) WGS 1984 geodetic: Latitude, longitude, ellipsoidal height
d) 7 parameter transformation: $\mathrm{dX}, \mathrm{dY}, \mathrm{dZ}, \mathrm{rx}$, ry, rz, scale
e) Local cartesian: X, Y, Z
f) Local ellipsoid
g) Local geodetic: Latitude, longitude, ellipsoidal height
h) Local projection
i) Local grid: Easting, Northing, orthometric height

All these elements can be specified when creating a coordinate system.

The default coordinate system

The WGS 1984 coordinate system

The active coordinate system

The default coordinate system is WGS 1984. It cannot be deleted.
Additional default coordinate systems may be available for certain countries.
WGS 1984 is the global geocentric datum to which all GPS positioning information is referred to. WGS 1984 is the default coordinate system on a RX900. It is not possible to manually create a coordinate system called WGS 1984.

The active coordinate system is the one attached to the job currently being used. One coordinate system is always considered as the active coordinate system.

Access

Managing coordinate systems

Accessing Coordinate System Management

SHIFT SET-D (F4)

Available unless a default coordinate system is highlighted. To turn the highlighted coordinate system into a user defined default coordinate system stored in the RX900.

SHIFT DEFLT (F5)

To recall the deleted default coordinate systems.

Creating/Editing a Coordinate System

な

ふ్ర

Creating/Editing a coordinate system step-by-step

Coordinate systems can be defined by manual creation or determined by calculation. In this chapter, the manual creation of coordinate systems is explained. Refer to " 28 Working with Determine Coord System" for information on the determination by calculation.

Coordinate systems with a Classic 3D transformation can be defined by manual creation.

Step	Description
1.	$\frac{12: 04}{G P S 900}$ Main Menu
2.	In MANAGE Coordinate Systems highlight a coordinate system. When creating a new coordinate system, a copy of this coordinate system is taken for further configurations.
3.	NEW (F2) or EDIT (F3) 4. NANAGE New Coordinate System or MANAGE Edit Coordinate System 16 characters long and may include spaces. Residuals. Available for transformations with control points. Manually entered transformations do not have control points. The method by which residuals are distributed throughout the transformation area. The transformation results become more realistic and any strain is dispersed in the transformation.

Step	Description Residuals: 1/Distance, 1/Distance ${ }^{2}$ and $1 /$ Distance $^{3 / 2}$ distribute the residuals of the control points according to the distance between each control point and the newly transformed point. Residuals: Multiquadratic distributes the residuals using a multiquadratic inter- polation approach. Transform. The type of transformation. The transformation type determines the availability and the options of the subsequent fields. Pre Transform. Available for Twostep transformations from System1200. The name of a preliminary 3D transformation which is used together with the selected projection to obtain preliminary grid coordinates to be used for a final $2 D$ transformation. Ellipsoid. Available unless projection Type: Customised. The local coordinates are based on this ellipsoid. Projection. The map projection. Geoid Model. The geoid model. CSCS Model. The Country Specific Coordinate System model. Make the required changes.
5.	STORE (F1) stores the coordinate system and returns to MANAGE Coordinate Systems.

4.4
 4.4.1

Access step-by-step

Managing transformations

Transformations

Accessing Transformation Management

Step	Description
1.	$\frac{12: 04}{\text { GPS900 }}$lia in Menu
2.	In MANAGE Coordinate Systems highlight a coordinate system to be edited.
3.	EDIT (F3)
4.	In MANAGE Edit Coordinate System highlight Transform.
5.	ENTER to access MANAGE Transformations.

MORE (F5)

To display information about the type of heights computed and the number of control points used for the determination of the transformation.

SHIFT SET-D (F4)

To turn the highlighted transformation into a user defined default transformation stored in the RX900.

4.4 .2

Access step-by-step

Creating/Editing a Transformation

Step	Description
1.	$\frac{12: 04}{\text { GPS900 }}$lia in Menu
2.	In MANAGE Coordinate Systems highlight a coordinate system to be edited.
3.	EDIT (F3)
4.	In MANAGE Edit Coordinate System highlight Transform.
5.	ENTER to access MANAGE Transformations.

Creating/Editing a transformation step-by-step

Step	Description
1.	In MANAGE Transformations highlight a transformation. When creating a new transformation, a copy of this transformation is taken for further configurations.
2.	NEW (F2) or EDIT (F3)
3.	MANAGE New Transformation, General page or MANAGE Edit Transformation, General page Name. A unique name for the new transformation. The name may be up to 16 characters long and may include spaces. Type. Output field. No other transformations than Classic 3D can be created. Enter a name.
4.	PAGE (F6) changes to the Parameters page.

Step	Description
5.	MANAGE New Transformation, Parameters page or MANAGE Edit Transformation, Parameters page Enter the known values or change the existing values of the transformation parameters.
6.	PAGE (F6) changes to the More page.
7.	MANAGE New Transformation, More page Height Mode. The type of heights to be computed or used. Transf Model. The transformation model to be used. For Transf Model: Molodensky-Bad, additional input fields are available.
8.	CLEAR (F5) Available for Transf Model: Molodensky-Bad. To set the additional input fields to 0.

4.5

4.5.1

Access step-by-step

Managing ellipsoids

Ellipsoids

Accessing Ellipsoid Management

Step	Description
1.	$\frac{12: 04}{\text { GPS900 }}$Main Menu
2.	In MANAGE Coordinate Systems highlight a coordinate system to be edited.
3.	EDIT (F3) to access MANAGE Edit Coordinate System.
4.	In MANAGE Edit Coordinate System highlight Ellipsoid.
5.	ENTER to access MANAGE Ellipsoids.

$11: 39$ MANAGE						Listed are all ellipsoids stored in the database DB-X.
Ellipsoids 区						
Name						
ATS-77						
Airy						CONT (F1)
Australian National Beijing-54						To select an ellipsoid and continue.
Bessel						NEW (F2)
Bessel	1841					To create a new ellipsoid.
Clarke	1866					EDIT (F3)
Clarke	1880				\checkmark	To edit the highlighted ellipsoid.
					a $\hat{\sim}$	DEL (F4)
CONT	NEW	EDIT	DEL			To delete the highlighted ellipsoid.

SHIFT SET-D (F4)

To turn the highlighted ellipsoid into a user defined default ellipsoid stored in the RX900.
SHIFT DEFLT (F5)
To recall the deleted default ellipsoids.

4.5.2

Access step-by-step

Step	Description
1.	$12: 04$ GPSS00 lia in Menu
2.	In MANAGE Coordinate Systems highlight a coordinate system to be edited.
3.	EDIT (F3) to access MANAGE Edit Coordinate System.
4.	In MANAGE Edit Coordinate System highlight Ellipsoid.
5.	ENTER to access MANAGE Ellipsoids.

Creating/Editing an ellipsoid step-by-step

Step	Description
1.	In MANAGE Ellipsoids highlight an ellipsoid. When creating a new ellipsoid, a copy of this ellipsoid is taken for further config- urations.
2.	NEW (F2) or EDIT (F3)
3.	MANAGE New Ellipsoid or MANAGE Edit Ellipsoid Name. A unique name for the new ellipsoid. A name is mandatory and may be up to 16 characters long and may include spaces. Axis a. The semi-major axis a. 1/f. The reciprocal value of flattening f. Enter a name.
4.	STORE (F1) stores the ellipsoid and returns to MANAGE Ellipsoids.

4.6
 4.6.1

Access step-by-step

Managing projections

Projections
Accessing Projection Management

Step	Description
1.	Main Menu
2.	In MANAGE Coordinate Systems highlight a coordinate system to be edited.
3.	EDIT (F3) to access MANAGE Edit Coordinate System.
4.	In MANAGE Edit Coordinate System highlight Projection.
5.	ENTER to access MANAGE Projections.

Listed are all projections stored in the database DB-X. Any unavailable information is shown as

CONT (F1)

To select a projection and continue. NEW (F2)

To create a new projection. EDIT (F3)

To edit the highlighted projection. DEL (F4)

To delete the highlighted projection.

SHIFT SET-D (F4)

Available unless a default projection is highlighted. To turn the highlighted projection into a user defined default projection stored in the RX900.

SHIFT DEFLT (F5)

To recall the deleted default projections.

Column	Option	Description of Column
Type	Customised	The projection type. Refer to standard surveying literature for details on projections. Customised projection. Certain fixed projections which cannot be defined by any of the following options.
Trans Mercator	Transverse Mercator. Conformal projection onto a cylinder with its axis lying on the equatorial plane. The cylinder is tangential to a meridian. Universal Transverse Mercator. Transverse Mercator projection with fixed zone-defining constants. The central meridian is selected automatically according to the selected zone number. Oblique Mercator. Oblique Mercator Conformal projection onto a cylinder. The cylinder is tangent to any circle other than the equator or a meridian. Mercator. Conformal projection onto a cylinder with its axis lying on a meridian plane. The cylinder is tangent to the sphere along the equator.	
Oblq Mercator	Mercator	

Column	Option	Lambert 1 Para
Lambert 2 Para	Lambert 1 Parallel. Conformal projection onto a cone, with its axis coinciding with the z-axis of the ellipsoid. Lambert 2 Parallel. Conformal projection onto a cone, with its axis coinciding with the z-axis of the ellipsoid. The cone is secant to the sphere. Soldner Cassini. Projection onto a cylinder. It is neither equal area nor conformal. The scale is true along the central meridian and along lines perpendic- ular to central meridian. Polar Stereographic. Conformal azimuthal projection onto a plane. The point of projection is on the surface of the ellipsoid diametrically opposite of the origin which is the centre of the projection. Double Stereographic. Conformal azimuthal projec- tion onto a plane. The point of projection is on the	
surface of the sphere diametrically opposite of the		
centre of the projection.		
Rectified Skewed Orthomorphic. This is a special type		
of Oblique Mercator projection.		

Access step-by-step

Step	Description
1.	$\frac{12: 04}{\text { GPS900 }}$
lia Mn Menu	

Creating/Editing a projection step-by-step

Step	Description
1.	In MANAGE Projections highlight a projection. When creating a new projection, a copy of this projection is taken for further configurations.
2.	NEW (F2) or EDIT (F3)
3.	MANAGE New Projection or MANAGE Edit Projection Name. A unique name for the new projection. A name is mandatory and may be up to 16 characters long and may include spaces. Type. The projection type. The setting for Type determines the availability of the subsequent fields for the parameters of the projection. Enter a name.
4.	STORE (F1) stores the projection and returns to MANAGE Projections.

4.7
4.7.1

Use in the field

Geoid field file

Geoid Models

Overview of Geoid Models

For use on the RX900 in the field, geoid field files are created from the geoid model.
The geoid separations in a geoid field file may be used in the field to change between ellipsoidal and orthometric heights.
Creation: In LGO with export into the internal memory of the RX900.
Extension: *.gem

Creating a geoid model

 on RX900Geoid models can be created on the RX900 in one of two ways:
1.

Geoid field file in
internal memory of
RX900

Geoid model on the RX900

Here the geoid field file is stored in the internal memory of the RX900. It is recommended for large geoid field files. This method is explained in this chapter.
2.

Here the geoid field file is transferred to the System RAM and can be used at any time. The total size of all files in the System RAM is restricted to 1 MB. Refer to " 22 Using the Tools - Transferring Objects" for information on how to transfer geoid field files to the System RAM of the RX900.
4.7 .2

Access step-by-step

Step	Description
1.	$\frac{12: 04}{\text { GPS900 }}$ liain Menu
2.	In MANAGE Coordinate Systems highlight a coordinate system to be edited.
3.	EDIT (F3) to access MANAGE Edit Coordinate System.
4.	In MANAGE Edit Coordinate System highlight Geoid Model.
5.	ENTER to access MANAGE Geoid Models.

Managing geoid models

Listed are all geoid models stored in the database. Any unavailable information is shown as -----, for example if the geoid field file which was associated to the geoid model is not available in the internal memory.

CONT (F1)

To select a geoid model and continue.

EDIT (F3)

To view the highlighted geoid model. None of the fields can be edited. The geoid field file from which the geoid model was created must be stored in the System RAM or in the \DATA\GPS\GEOID directory of internal memory.

DEL (F4)

To delete the highlighted geoid model. The geoid field file which was associated with this geoid model is then also deleted.

Requirement

At least one geoid field file with the extension *.gem is in the \DATA\GPS\GEOID directory of the internal memory. Refer to "22 Using the Tools - Transferring Objects" for information on how to transfer geoid field files to the System RAM on the RX900.

Creating a geoid model step-by-step

Use in the field

CSCS field file

CSCS Models
For use on the RX900 in the field, CSCS field files are created from the CSCS model.
CSCS field files may be used in the field to directly convert coordinates from WGS 1984 to local grid without the need of transformation parameters.
Creation: In LGO with export into the internal memory of the RX900.
Extension: *.csc
The creation of CSCS models on the RX900 and the functionality of all screens and fields are similar to those for geoid models.
The directory in the internal memory for CSCS field files with the extension *.CSC is \DATA\GPS\CSCS.

Description

Transformation

Geoid model

Terminology

This chapter describes technical terms related to coordinate system management.
Refer to "4.1 Overview of Coordinate Systems" for information on transformations.

Description

GPS operates on the WGS 1984 ellipsoid and all heights obtained by measuring baselines are ellipsoidal heights. Existing heights are usually orthometric heights, also called height above the geoid, height above mean sea level or levelled height. The mean sea level corresponds to a surface known as the geoid. The relation between ellipsoidal height and orthometric height is

Orthometric Height $=$ Ellipsoidal Height - Geoid Separation \mathbf{N}

a
a) WGS 1984 ellipsoid
b) Geoid

PO Measured point
dl Ellipsoidal height
d2 Geoid separation N , is negative when the geoid is below the ellipsoid

N value and geoid model

The geoid separation (N value) is the distance between the geoid and the reference ellipsoid. It may refer to the WGS 1984 or to the local ellipsoid. It is not a constant except over maybe small flat areas such as $5 \mathrm{~km} \times 5 \mathrm{~km}$. Therefore it is necessary to model the N value in order to obtain accurate orthometric heights. The modelled N values form a geoid model for an area. With a geoid model attached to a coordinate system, N values for the measured points can be determined. Ellipsoidal heights can be converted to orthometric heights and back.

Refer to the online help of LGO for more information on geoid models.
Geoid models are an approximation of the N value. In terms of accuracy, they may vary considerably and global models in particular should be used with caution. If the accuracy of the geoid model is not known it might be safer to use local control points with orthometric heights and apply a transformation to approximate the local geoid.

Geoid field file

CSCS model
Geoid field files may be used in the field to calculate orthometric heights out of ellipsoidal heights and vice versa.

Description

Country Specific Coordinate System models

- are tables of correction values to directly convert coordinates from WGS 1984 to local grid without the need of transformation parameters.
- take the distortions of the mapping system into account.
- are an addition to an already defined coordinate system.

Types of CSCS models

The correction values of a CSCS model can be applied at different stages in the coordinate conversion process. Depending on this stage, a CSCS model works differently. Three types of CSCS models are supported by GPS900. Their conversion process is as explained in the
following table. Any suitable geoid model can be combined with a geodetic CSCS model. Refer to the online help of LGO for more information on CSCS models.

Type	Description
Grid	1. Determination of preliminary grid coordinates by applying the specified transformation, ellipsoid and map projection. 2. Determination of the final local grid coordinates by applying a shift in Easting and Northing interpolated in the grid file of the CSCS model.
Cartesian	1. Performing the specified transformation. 2. Determination of local cartesian coordinates by applying a 3D shift interpolated in the grid file of the CSCS model. 3. Determination of the final local grid coordinates by applying the speci- fied local ellipsoid and map projection.
Geodetic	1. Determination of local geodetic coordinates by applying a correction in latitude and longitude interpolated from the file of the CSCS model. 2. Determination of the final local grid coordinates by applying the local map projection. ك家 Using a geodetic CSCS model excludes the use of a transformation in a coordinate system.

CSCS field files may be used in the field. They are extracted from the main CSCS model, which may be too big to fit on the instrument.
5.1

Description

雨

Access

Converting Data - Copy, Export, Import

Copying Points Between Jobs

This chapter explains the process of copying points from one job to another.

Important features:

- Points selected for copying may be viewed in a points listing. The point sort settings define the order of the points in the listing.
- When points are copied from one job to another:
- their point codes and attached attributes are also copied.
- their Class is retained.
- their Sub Class is retained.
- their Source is changed to Copied Point.
- their Point Coordinate Quality is retained.
- their Instrument Flag is retained.
- their Date and Time Stamp is retained.

Main Menu

Copying points between jobs

CONT (F1)
To accept the screen entries and continue. DATA (F5)

To view, edit and delete points stored with the job. Selected sort settings apply.

Field	Description of Field
From Job	Describes where the points are to be copied from.
Coord System	The coordinate system which is currently attached to the job From Job.
To Job	Describes where the points are to be copied to.

5.2

Description

Export formats

Exporting Data from a Job

- This screen lists all the exporters loaded.
- Data will be exported to a file on the internal memory.
$\left.\begin{array}{|l|l|l|}\hline \text { Format } & \text { Characteristic } & \text { Description } \\ \hline \begin{array}{l}\text { Custom } \\ \text { ASCII }\end{array} & \text { Export variables } & \text { Refer to the online help of LGO. } \\ \text { Format definition } & \begin{array}{l}\text { Composed individually as format file using } \\ \text { LGO. Refer to the online help of LGO for } \\ \text { information on creating format files. } \\ \text { Coordinate conversion } \\ \text { Hefined within the format file. } \\ \text { All coordinate types are supported. } \\ \text { All height types are supported. If the desired } \\ \text { height cannot be computed, the default } \\ \text { value for the missing variable is output. }\end{array} \\ \hline \text { Specialities: } \\ \text { Points in file outside of CSCS } \\ \text { model } \\ \text { Points in file outside of geoid } \\ \text { model }\end{array} \quad \begin{array}{l}\text { The default value for missing variable is } \\ \text { output. } \\ \text { The default value for missing variable is } \\ \text { output, also if a geoid separation is available. }\end{array}\right\}$

Format	Characteristic	Description
Specialities:	Points in file outside of CSCS model Points in file outside of geoid model	Points in local grid position without CSCS transformation are exported. The ellipsoidal height is exported.

Requirements

Export ASCII Data from Job

Export data job to a custom ASCII format step-by-step

At least one format file was created using LGO and has been transferred to the System RAM.

- The settings on this screen define the data that is converted and exported and what format is used.
- Data is exported from the selected job. Currently active sort settings are applied. The points that are exported are those that are visible in MANAGE Data: Job Name.

Step	Description
1.	
2.	Export ASCII
3.	EXPORT Export ASCII Data from Job Export To: Internal Memory Data can be exported to the internal memory. Directory The data can be exported to the \Data, the \GSI or the root directory. Job. All jobs from Main Menu: can be selected. Coord System. The coordinate system currently attached to the selected Job.

Step	Description Format File. The format files currently available in the System RAM. File Name. The name of the file to which the data should be exported. Select the job to be exported and enter a file name.
4.	Highlight Format File and ENTER.
5.	EXPORT Format Files All format files available in the System RAM are listed. Select the format file to be used.
6.	CONT (F1) selects the highlighted format file and leads back to EXPORT Export Data from Job.
5	CSYS (F6) accesses EXPORT Coordinate Systems. To update the coordinate system in which the coordinates are exported.
7.	CONT (F1) exports the data.
8.	Information message: Are more data to be exported? • If yes, continue with step 9. • If no, continue with step 10.
9.	YES (F4). Repeat steps 2. to 8.
10.	NO (F6) returns to the GPS900 Main Menu.

Export data job to DXF format step－by－step

Step	Description
1.	
2.	DXF Export
3.	EXPORT DXF from Job Job．All jobs from Main Menu： can be selected． Coord System．The coordinate system currently attached to the selected Job． File name．The name of the file to which the data should be exported．The name is automatically suggested based on the job name to be exported and the exten－ sion dxf．
雨	CONF（F2）accesses Configuration，Export page． Points．Defines if points are exported． Lines．Defines if lines are exported． Areas．Defines if areas are exported． Filter．Defines which points are exported． PAGE（F6）changes to the DXF page． Lines \mathcal{E} Areas．Defines if lines and areas are exported as Line or Polyline entities． LGO Symbols．Defines if a block is created for each point with the same icons used in LGO． Symbol Size．Defines the size used for creation of the LGO symbols． Dimensions．Defines the dimension of the DXF file． DXF Layer．Defines the DXF Layer as Default，Code Group or Code．

Step	Description
约	PAGE (F6) changes to the Labels page. The settings on this page define which labels with information (Point ID, Coords, Height and Pt Code) for each point are exported. For each label the DXF layer name and the color can be defined. Addi- tionally the decimals can be defined for the Coords and Height label.
4.	CONT (F1) leads back to DXF Export Export DXF from Job.
5.	CONT (F1) exports the data.
6.	Information message: Are more data to be exported? If yes, continue with step 6. If no, continue with step 7.
7.	YES (F6). Repeat steps 3. to 5.
8.	NO (F4) returns to the GPS900 Main Menu.

Importing Data to a Job

Description

Import formats

- This screen lists all the importers loaded. The data to import must be stored in the internal memory.
- Data can be imported to a job in the internal memory.

Format	Characteristic	Description
ASCII	Import variables	Point ID, grid coordinates, thematical codes. No free codes, no attributes. Format definition Free format. Use and order of variables and delimiter can be defined during import. As currently configured on the RX900.
	Units Height Local heights but no coordi- nates in file Coordinates but no heights in file Neither coordinates nor heights in file No point ID's in file	Points are imported without coordinates but with local height and code if available. Points are imported without height but with coordinates and code if available. No import
GSI8	Import variables	No import
GSI16	Point ID (WI 11), local coordinates (WI 81, WI 82, WI 83), thematical codes (WI 71). No free codes, no attributes. Example for GSI8: $110014+0000144881 . .01+00001363$ $82 . .01-00007748 ~ 83 . .01-00000000$ $71 . . .+000$ sheep	

Format	Characteristic	Description
Format definition	Fixed format. Easting and Northing can be switched during import. Heights Local heights but no coordi- nates in file Coordinates but no heights in file Neither coordinates nor heights in file No point ID's in file	Orthometric or ellipsoidal Points are imported without coordinates but with local height and code if available. Points are imported without height but with coordinates and code if available. No import
DXF	Import variables Format definition Units Heights Neither coordinates nor heights in file	No import
Block, point, line, arc, polyline. Local coordi- nates. No free codes, no attributes.		
Fixed format (X/Y/Z).		
Not predefined.		
Z value imported as orthometric.		
No import		

Checks

Points are always imported with the class CTRL and a coordinate quality of -----. While importing points to a job, checks are performed against point ID, class and coding of points already existing in the job.

Step	Description
回	At least one ASCII file with any file extension is stored in the \DATA directory of the internal memory. Ha in Menu
2.	Import ASCII/GSI Data
3.	IMPORT Import ASCII/GSI Data to Job Import: ASCII Data From File. All files in the \DATA directory of the internal memory can be selected. To Job. Choosing a job as destination for import makes this job the active job. Header. This option allows up to ten header lines which may exist in an ASCII file to be skipped. Select the number of header lines.
4.	CONF (F2) defines the format of the data to be imported.
5.	IMPORT Define ASCII Import Delimiter. The separator between the import variables. Multi Spaces. Available for Delimiter: Space. Multi Spaces: No for space delimited data having one space between the variables. Multi Spaces: Yes for space delimited data having multi spaces between the variables. No. Lines/Pt. Available for Delimiter: Line Feed. The number of lines used to describe each point. Select the delimiter and the positions of the particular variables.
因	DEFLT (F5) recalls the default ASCII import settings.
6.	CONT (F1) leads back to IMPORT Import ASCII/GSI Data to Job

Step	Description
7.	CONT（F1）imports the data．
8.	Information message：Are more data to be imported？ • If yes，continue with step 9.
9.	YES（F6）．Repeat steps 3．to 8．
10.	NO（F4）returns to the GPS900 Main Menu．

Import data in GSI format step－by－step

Step	Description
艮家	At least one ASCII file in GSI format with the file extension＊．gsi is stored in the \GSI directory of the internal memory． Select Main Menu：
2.	Import ASCII／GSI Data
3.	IMPORT Import ASCII／GSI Data to Job Import：GSI Data From File．All files with extension＊．gsi in the \GSI directory of the internal memory can be selected． To Job．Choosing a job as destination for import makes this job the active job．
雨	CONF（F2）accesses IMPORT Define GSI Import．For Switch WI81／WI82：Yes all WI 81 data，normally Easting，is imported as Northing and all WI 82 data，normally Northing，is imported as Easting．This coordinate switch is necessary for＂left handed＂coordinate systems．

Step	Description
4.	CONT (F1) imports the data.
5.	Information message: Are more data to be imported? • If yes, continue with step 6. - If no, continue with step 7.
6.	YES (F6). Repeat steps 3. to 5.
7.	NO (F4) returns to the GPS900 Main Menu.

Import DXF data step-by-step

Step	Description File Units. Choosing the unit for the DXF data to be imported. Create Vertex Points. Option if points will be created at vertices of the imported line/arc/polyline elements. These points will be imported with class EST. Convrt White Elements. Option if white colored elements will be converted to black elements. Exclude Height. Height value inside the DXF file is considered invalid and will not be converted. CONT (F1) leads back to DXF IMPORT Import DXF Data to Job.
4.	CONT (F1) imports the data.
5.	Information message: Are more data to be imported? - If yes, continue with step 6. $-\quad$ If no, continue with step 7.
6.	YES (F6). Repeat steps 3. to 5.
7.	NO (F4) returns to the GPS900 Main Menu.

6

Configuring the Antenna

Description

Access

Configuring

CONT $\quad \square$ SRCH \square

CONT (F1)
To accept the screen entries and continue. SRCH (F4)

To search for all available Bluetooth devices. If more than one Bluetooth device is found a list of available devices is provided. The user can then select from this list.

Field	Description of Field
Antenna	- The antenna in the RX900 System RAM.
Default Ht	-The default antenna height during the use of the programs. The antenna height can still be changed during a survey. Vert Offset Comm - The vertical antenna offset for the selected antenna.

Field	Description of Field
	-Bluetooth. Use this setting if RX900 will be connected to ATX900 GG via Bluetooth. - USB Cable. Use this setting if RX900 will be connected to ATX900 GG via Cable. ID Address - The ID address of ATX900 GG to be used.

Description

Access

Configuring

Field	Description of Field
Attributes	-Determines the attribute values displayed under certain circum- stances. This is applicable to both the storing and displaying of attribute values. -Default Values. When available, the default attribute values, as stored in the job, are displayed and stored.

Field	Description of Field \bullet Thematc Codes Thed. When available, the last used attribute values as stored in the job are displayed and stored.
-Sets the coding method. - With Codelist. Codes stored within the job codelist can be selected to code points. - Without Codelist. Codes stored within the job codelist cannot be selected to code points. Each code must be entered manually.	

8

Configuring the Coordinate Quality Control

Description

Access

Configuring

Field	Description of Field
CQ Control	-The type of coordinate quality to be checked before storing a point. If activated, the limit defined in Maximum CQ is checked before storing a point. A warning signal is given when the limit is exceeded. - None. No checking is made on the point.

Field	Description of Field
	- Pos Only. The point position is checked. - Height Only. The point height is checked.
Maximum CQ	-Available unless CQ Control=None. The maximum acceptable coor- dinate quality.

Configuring the Display Mask

Description

Access

Configuring

Display settings define the parameters shown on the main page of the Survey program. The settings on this screen define the layout of the display mask.

CONT (F1)
To accept the screen entries and continue. CLEAR (F4)

To clear all the fields except the first field. DEFLT (F5)
CONT \square CLEAR DEFLT \square To recall the default settings.

Field	Description of Field
Name	\bullet
Visible	-
This is set to Yes. The display mask is always shown.	
Fixed Lines	•
lsom 0 to 5 . Defines how many lines do not scroll in the screen.	

Description of Field

- Antenna Ht. Input field for antenna height for static observations.
- Attrib (free) 01-04. Output field for attributes for free codes.
- Attrib 01-04. Input field for attributes for codes.
- Code. Input field for codes.
- Code (free). Input field for free codes.
- Code Desc. Output field for description of codes.
- Code Desc (free). Output field for description of free codes.
- Code Type. Output field for the type of code.
- GDOP. Output field for current GDOP of the computed position.
- HDOP. Output field for current HDOP of the computed position.
- Line Space Full. Insert full line space.
- Line Space Half. Insert half line space.
- Moving Ant Ht. Input field for antenna height for moving observations.
- PDOP. Output field for current PDOP of the computed position.
- Point ID. Input field for point number.
- Quality 1D. Output field for current height coordinate quality of computed position.
- Quality 2D. Output field for current 2D coordinate quality of computed position.

Description of Field

- Quality 3D. Output field for current 3D coordinate quality of computed position.
- RTK Positions. Output field for number of positions recorded over the period of point occupation. Appears in the display mask of real-time rover configurations.
- Time at Point. Output field for time from when the point is occupied until point occupation is stopped. Appears in the display mask during the point occupation.
- VDOP. Output field for current VDOP of the computed position.

Configuring the HOT Keys and the USER Menu

Description

The settings on this screen assign a particular function, screen or application program to each of the hot keys and to the USER key. Refer to "26 Understanding HOT Keys, USER key, STATUS Key" for more information on hot keys and the USER key.

Access

Configuring

 the Hot Keys

Hot Keys [User Menu|

Configuring the User Menu

Hot Keys User Menu|

CONT (F1)
To accept the screen entries and continue. DEFLT (F5)

To recall the default settings.
PAGE (F6)
To change to the next page on the screen.

Field	Description of Field
1 to 9	All functions, screens or application programs which can be assigned to the individual lines in the user defined menu.

11

Description

Access

Configuring

Configuring the Instrument Identification

The settings on this screen define the instrument identification number. This number is used for the generation of the file names. Using format files, the instrument ID can be output together with data from the instrument. By doing so, it can be identified which instrument was used for certain measurements.
Main Menu
Main Menu

Instrument ID: 0001

CONT (F1)
To accept the screen entries and continue.

To recall the default settings.

Field	Description of Field
Instrument ID	Sets a four digit number as instrument identification number. By default the last four numbers of the serial number are used.

Configuring the Language

Description

Access

Configuring

The setting on this screen defines the language used on the instrument. Three languages can be stored on the RX900 at one time - English and two others. English cannot be deleted. Refer to "23 Using the Tools - Uploading Software" for information on uploading languages.

CONT (F1)

To accept the screen entries and continue. DEL (F4)

To delete the highlighted language.

Field	Description of Field
Language	The languages available on RX900. The selected language is used for the system software. If a language is not available for the system software, the English language is used instead. Application programs run in the language they were loaded.

13

Description

Access

Configuring

Configuring the Local Time Zone

The settings on this screen help RX900 to quickly locate and track satellites.

Field	Description of Field
Time Zone	• From $-13: 00$ to $+13: 00$. The time zone for the current location and local date.
Local Time	\bullet Setting the local time supports a very fast satellite acquisition.
Local Date	\bullet Setting the local date supports a very fast satellite acquisition.

14

Configuring the Point Occupation Settings

Description

Access

Configuring pt occupation settings

The settings on this screen define the way in which points are occupied and recorded.

CONT (F1)
To accept the screen entries and continue.

PARAM (F3)

To configure the time interval after which a
CONT \square PARAM \square cally.

Field	Description of Field
Auto STOP	\bullet Yes or No. Stops the measurements automatically when the parameter defined reaches 100%.
Auto STORE	• Yes or No. Stores points automatically after stopping the point occupation.

Configuring auto stop parameters

Auto STOP/\%Indicator based on

CONT (F1)

To accept the screen entries and continue.

Field	Description of Field
Pos Quality	Sets the maximum position qualities for each point occupation. Calculating the qualities starts when OCUPY (F1) is pressed. The RX900 stops measuring when the position and height qualities are both less than the configured values.
Ht Quality	Sets the maximum height qualities for each point occupation. Calcu- lating the qualities starts when OCUPY (F1) is pressed. The RX900 stops measuring when the position and height qualities are both less than the configured values.
Positions	Raw data is recorded for a minimum number of positions even when the Pos Quality and Ht Quality is already less than the specified maximum.
Position Update	The time interval after which a new position is calculated.

15

Configuring the Radio Channel

Description

Access

Configuring

The settings on this screen allow parameters related to radio to be configured.

Field	Description of Field
Channel	•The radio channel. The channel used must be within minimum and maximum allowed input values. The minimum and maximum allowed input values for a radio depend on the number of chan- nels supported by the radio and the spacing between the chan- nels. Type in the radio channel. Actual Freq •The actual frequency of the radio. Only available for the Satelline 3AS radio.

16

Description

Access

Configuring

CONT (F1)
To accept the screen entries and continue.
SHIFT INIT (F4)
Force the receiver to delete the current GPS and GLONASS almanac stored and to download new almanacs.

CONT	Description of Field
Sat System	Defines the satellite signals accepted by the receiver when tracking satellites. GPS only. Only GPS satellites are tracked. GPS \& GLONASS. GPS and GLONASS satellites are tracked.

Field	Description of Field
Cut Off Angle	Sets the elevation in degrees below which satellite signals are not used and are not shown to be tracked. Recommended setting for real-time: 10°.

17

Description

Access

Configuring the Screen Display

The settings on this screen allow the screen appearance to be configured, turn the notification beeps on and off and define the behaviour of the keys. The settings are stored on the RX900 itself. If RX900's are exchanged, the settings stored on the new RX900 apply.

Configuring the display

CONT (F1)
To accept the screen entries and continue.
PAGE (F6)
To change to the next page on the screen.

Field	Description of Field
Screen Illum	-Controls the screen illumination to be on, off or on for the spec- ified time after the last key was pressed, or touch screen event. -Off. Always On.

Field	Description of Field
	- On for 1 min, 2 min, 5 min.
Key Illum	- Controls the keyboard illumination. - Off. - Same as Screen. - Always On.
Contrast	- From 0\% to 100\%. Adjust the contrast level for the display with the right and left arrow key when the field is highlighted or using the supplied stylus on the slider.
Heating	- Automatic. The screen heating comes on automatically at $5^{\circ} \mathrm{C}$ and shuts off again at $7^{\circ} \mathrm{C}$. - Off. The screen heating never comes on.

Configuring the beeps

Field	Description of Field
Warning Beeps	\bullet Off, Soft, Loud. Controls the beeps for acoustic warning signals.
Key Beeps	\bullet Off, Soft, Loud. Controls the beeps upon key presses on RX900.

Configuring the text

CONT (F1)

To accept the screen entries and continue.

To change to the next page on the screen.

Field	Description of Field
Deflt $\boldsymbol{\alpha N u m}$	Sets the set of extra characters available through $\alpha \mathbf{N U M}$ or F1-F6 whenever an entry is made. The choices available depend on the character sets loaded on the instrument and the language configured to be used on the instrument.

18

Configuring the Units and Formats

Description

Access

Configuring the units
The settings on this screen define:

- the units for all types of measurement data displayed.
- information related to some types of measurement data.
- the order in which coordinates are displayed.

Field	Description of Field
Distance Unit	- The units shown for all distance and coordinate related fields.
	- Metre (m). Metres [m]

Field	Description of Field
	- Int $\mathbf{F t}$ (fi). International feet [fi], storage in US feet - Int $\mathrm{Ft} /$ /Inch (fi). International feet [fi], inches and $1 / 8$ inches (0^{\prime} $000 / 8$ fi), storage in US feet - US Ft (ft). US feet [ft] - US Ft/Inch (ft). US feet, inches and $1 / 8$ inches (0 ' $000 / 8 \mathrm{fi}$) [ft] - Kilometres (km). Kilometres [km] - US Miles (mi). US miles [mi]
Distance Dec	- From $\mathbf{0}$ Decimals to 4 Decimals. The number of decimal places shown for all distance and coordinate related fields. This is for data display and does not apply to data export or storage. The available options depend on the selected Distance Unit.
Angle Unit	- $\mathbf{4 0 0}$ gon, 360° ' ", $\mathbf{3 6 0}$ 年 dec or $\mathbf{6 4 0 0} \mathbf{~ m i l}$. The units shown for all angular and coordinate related fields. More angle settings can be defined on the Angle page.
Angle Dec	- The number of decimal places shown for all angular and coordinate related fields. This is for data display and does not apply to data export or storage. - From 1 Decimal to 3 Decimals. Available for Angle Unit: 6400 mil. - From 2 Decimals to 4 Decimals. Available for Angle Unit: 400 gon and Angle Unit: $360^{\circ} \mathrm{dec}$. - $1^{\prime \prime}, 5^{\prime \prime}, 10^{\prime \prime}, 60^{\prime \prime}$. Available for Angle Unit: $360^{\circ}{ }^{\prime}$ ' .
Grade Unit	- The input and output format for grades. - h:v. Horizontal by vertical distance.

Field	Description of Field
	- v:h. Vertical by horizontal distance. - \% (v/h * 100). Percentage of vertical by horizontal distance. - Elev Angle. Elevation angle.
Velocity Unit	- Km/h (kmh), Mph (mph) or Knots (kn). The units shown for all velocity related fields.
Area Unit	- $\mathbf{m}^{\mathbf{2}}$, Int Acres (Ai), US Acres (A), Hectares (ha), $\mathrm{fi}^{\mathbf{2}}$ or $\mathrm{ft}^{\mathbf{2}}$. The units shown for all area related fields.
Volume Unit	- $\mathbf{m}^{\mathbf{3}}, \mathrm{fi}^{\mathbf{3}}, \mathrm{ft}^{\mathbf{3}}$ or $\mathbf{y d}^{\mathbf{3}}$. The units shown for all volume related fields.
Temp Unit	- Celsius $\left({ }^{\circ} \mathbf{C}\right)$ or Fahrenheit $\left({ }^{\circ} \mathbf{F}\right)$. The units shown for all temperature related fields.
Press Unit	- mbar, mmHg, Inch Hg (inHg), hPa or psi. The units shown for all pressure related fields. PSI = pounds per square inch.

Configuring the angle

CONT (F1)
To accept the screen entries and continue.

PAGE (F6)
To change to the next page on the screen.

Field	Description of Field
Direc Ref	• North Azimuth, South Azimuth, North Anticlock or Bearing. Sets the reference direction as well as the direction from where and how azimuths are computed. For Direc Ref: Bearing, the azimuth/bearing fields in other screens are called Bearing. NE, SW, SE and NW indicate the quadrant of the bearing.

| Field | Description of Field |
| :--- | :--- | :--- |
| | - For all other options, the azimuth/bearing fields in other screens |
| are called Azimuth. | |

Configuring the time

$\frac{12: 38}{\text { CONFIGURE }}$				
Units \& Formats				
Units\|Angle Time				
Time Format				
Date Forma				

CONT (F1)
To accept the screen entries and continue.

PAGE (F6)
To change to the next page on the screen.

Field	Description of Field
Time Format	$\bullet$$\mathbf{2 4}$ hour or $\mathbf{1 2}$ hour (am/pm). How the time is shown in all time related fields.
Date Format	-Day.Month.Year, Month/Day/Year or Year/Month/Day. How the date is shown in all date related fields.

Configuring the format

CONT (F1)
To accept the screen entries and continue.

To change to the next page on the screen.

Field	Description of Field
Grid Format	- East,North or North,East. The order in which grid coordinates are shown in all screens. The order in display masks depends on the user settings.
Geodetic Format	• Lat,Long or Long,Lat. The order in which geodetic coordinates are shown in all screens. The order in display masks depends on the user settings.

Using the Tools - Activating Licence Keys

Description

Access

Protected programs

Protected option

A licence key can be used to activate protected programs and protected receiver options and can be used to define the expiry date of the software maintenance.


```
Ma in Menu
```

A licence key is required for the following protected programs:

Protected programs

- DTM Stakeout
- DXF Export
- Reference Line
- RoadRunner
- Volume Calculations

A licence key is required for the following protected receiver option:

Protected receiver options

- 2 Hz update rate
- 5 Hz update rate
- 5 km RTK range
- GLONASS option

Entering/Loading a licence key

- A licence key file can be uploaded to RX900. To upload a licence key file the file should be located on the \SYSTEM directory of the internal memory. Licence key files use the naming convention L_123456.key, where 123456 is the instrument serial number.
- Licence keys can also be typed in manually.

CONT (F1)

To accept the screen entries and continue. SHIFT DEL (F4)

To delete all licence keys on RX900.

Field	Description of Field
Method	•The method used to input the licence key to activate the program or the protected options or the software maintenance. Upload Key File. The licence key file is uploaded from the internal memory. The licence key file must be stored in the ISYSTEM directory in the internal memory. Manual Entry of Key. Allows the licence key to be typed in manually. Key- Available for Method=Manual Entry of Key. The licence key required to activate a program. Entry is not case sensitive.

The next step

IF a licence key is to be	THEN
uploaded	select the method to input the licence key and press CONT (F1).
deleted	press SHIFT DEL (F4).

Using the Tools - Calculating with Calculator

20.1

Description

Access

Operating modes

Overview of Calculator

The calculator can be used to perform the following arithmetic operations:

- addition, subtraction, multiplication and division,
- statistics,
- trigonometry, hyperbolic trigonometry and calculations with Pi,
- polar, rectangular and angle conversions,
- powers, logs, roots and exponential functions.

 Main Menu

- The calculator has two operating modes - RPN mode and Standard mode.
- The arithmetic operations available are identical, the difference lies in the way information is entered, stored and displayed on the screen.

Type	Description
RPN	\bulletReverse Polish Notation This operating mode was developed as a way of writing mathe- matical expressions without using parenthesis and brackets. Many scientific calculators, for example Hewlett Packard calcula- tors, are implemented with this operating mode. Values are entered and kept in a working stack.
Standard	• This operating mode is based on the principles of conventional
	pocket calculators. There is no stacking of values.

Calculator in RPN mode

Using the Calculator in RPN Mode

The function keys F1-F6 are allocated seven times. Using \triangle or ∇ the various allocations can be accessed.

Field	Description of Field
First field on the screen	- The unit used for trigonometric functions in the calculator as configured in TOOLS Calculator Configuration. - DEG. Degrees - RAD. Radians - GRAD. Gon
$\Sigma \mathbf{Y}$	- The result of the sum or difference of values in Y using $\Sigma+(F 1)$ and Σ (F2).
$\boldsymbol{\Sigma} \mathbf{X}$	- The result of the sum or difference of values in X using $\Sigma+(F 1)$ and $\Sigma-(F 2)$.
T	- Third stack. After an operation, the value from Z is written here.

Field	Description of Field
\mathbf{Z}	$\bullet \quad$ Second stack. After an operation, the value from Y is written here.
\mathbf{Y}	$\bullet \quad$ First stack. After an operation, the value from X is written here.
\mathbf{X}	$\bullet \quad$ The value for the next operation.

The next step
Press SHIFT DONE (F4) to return to the Main Menu screen.

Calculator in Standard mode

Using the Calculator in Standard Mode


```
DEG
\Sigma :
0.00000
                            45.00000
C0S(45.000#)=0.707#
    0.70711
The function keys F1-F6 are allocated seven times. Using \(\triangle\) or \(\nabla\) the various allocations can be accessed.
```

Field	Description of Field
First field on the screen	- The unit used for trigonometric functions in the calculator as configured in TOOLS Calculator Configuration. - DEG. Degrees - RAD. Radians - GRAD. Gon
Σ	- The result of the sum or difference of values in the last field on the screen using $\Sigma+(\mathbf{F} \mathbf{1})$ and Σ - (F2).
Third to sixth field on the screen	- Previously entered value or latest operation including result. \# indicates that the value is cut after the third decimal.

Field	Description of Field
Last field on the screen	• The value for next operation or result from latest operation.

The next step
Press SHIFT DONE (F4) to return to the Main Menu screen.

Description of softkeys

Softkey	Description of Softkey
Level 1 (press ∇ to access the next level).	
+	(F1): To add X and Y.
$-$	(F2): To subtract X from Y.
*	(F3): To multiply X by Y .
1	(F4): To divide Y by X.
$+/-$	(F5): To change between positive and negative algebraic sign for X.
CLR X	(F6): To clear X.
Level 2 (press ∇ to access the next level).	
$\Sigma+$	(F1): To add X to $\boldsymbol{\Sigma} \mathbf{X}$ and Y to $\boldsymbol{\Sigma} \mathbf{Y}$.
$\boldsymbol{\Sigma}$ -	(F2): To subtract X from $\boldsymbol{\Sigma} \mathbf{X}$ and Y from $\boldsymbol{\Sigma} \mathbf{Y}$.
MEAN	(F3): To calculate the mean $\boldsymbol{\Sigma} \times$.
SDEV	(F4): To calculate the standard deviation for $\boldsymbol{\Sigma} \times$.
	(F5): This softkey is blank.
CLRE	(F6): To clear $\boldsymbol{\Sigma}$ X and $\boldsymbol{\Sigma}$ Z.
Level 3 (press ∇ to access the next level).	
SIN	(F1): To calculate sine of X.

Softkey	Description of Softkey
COS	(F2): To calculate cosine of X.
TAN	(F3): To calculate tangent of X.
ASIN	(F4): To calculate arcsine of X.
ACOS	(F5): To calculate arccosine of X.
ATAN	(F6): To calculate arctangent of X.
Level 4 (press ∇ to access the next level).	
${ }^{\circ} \mathrm{DMS}$	(F1): To convert decimal degrees into dd.mm.ss.
${ }^{\circ} \mathrm{DEC}$	(F2): To convert dd.mm.ss into decimal degrees.
PI	(F3): To insert X: 3.1415926536. The number of decimals depends on the selection for Display Dec in TOOLS Calculator Configuration.
	(F4): This softkey is blank.
D->R	(F5): To convert degrees into radians.
R->D	(F6): To convert radians into degrees.
Level 5 (press ∇ to access the next level).	
POLAR	(F1): Conversion of rectangular coordinates into polar coordinates. The y coordinate must be visible in Y and the x coordinate in X when pressing this key. The angle is displayed in Y and the distance in X .
RECT	(F2): Conversion of polar coordinates into rectangular coordinates. The angle must be visible in Y and the distance in X when pressing this key. The y coordinate is displayed in Y , the x coordinate in X .

Softkey	Description of Softkey
SQRT	(F3): To calculate $\sqrt{ }(\mathrm{X})$.
$\mathrm{X}^{\wedge} 2$	(F4): To calculate $(X)^{2}$.
1/X	(F5): To calculate inverse X.
$Y^{\wedge} \mathrm{X}$	(F6): To calculate (Y) ${ }^{\mathrm{X}}$.
Level 6 (press ∇ to access the next level).	
LOG	(F1): To calculate the $\log _{10}(\mathrm{X})$.
$10^{\wedge} \mathrm{X}$	(F2): To calculate $10^{(X)}$.
LN	(F3): To calculate the $\log _{\mathrm{e}}{ }^{(X)}$.
$e^{\wedge} X$	(F4): To calculate $\mathrm{e}^{(\mathrm{X})}$.
\square	(F5): This softkey is blank.
$Y^{\wedge} \mathrm{X}$	(F 6): To calculate (Y) ${ }^{(X)}$.
Level 7 (press ∇ to access the first level).	
STO	(F1): To store X to the memory. Up to ten values can be stored.
RCL	(F2): To recall a value for X from the memory. Up to ten values can be recalled.
$\mathrm{X}<>\mathrm{Y}$	(F3): To swap the values for X and Y .
LASTX	(F4): To recall the last X before recent calculation.
	(F5): This softkey is blank.

Softkey	Description of Softkey
CLEAR	(F6): To delete everything.

Press SHIFT at any level, to access the second level of function keys.

Softkey	Description of Softkey
CONF	(F2): To configure the calculator.
DONE	(F4): To return to the Main Menu screen.

20.5

Access step-by-step

Configuring the Calculator

Step	Description
1.	Select Main Menu: Tl 䀳..
2.	SHIFT CONF (F2) to access TOOLS Calculator Configuration.

Configuring

$\frac{11: 38}{\text { TOOLS }}$			
Calculator Configuration			
Operatng Mod	lode		RPN4
Angle Unit			DEG ${ }^{1}$
Display Dec	c		mals 性

Field	Description of Field
Operatng Mode	$\bullet \quad$ RPN. The principle of, for example, Hewlett Packard calculators.
- \quad Standard. The principle of conventional pocket calculators.	
Angle Unit	-The unit used for trigonometric functions in the calculator. The selection here is independent from the angle setting in CONFIGURE Units \& Formats.

Field	Description of Field
	• DEG. Degrees Display Dec GRAD. Gon
	- From $\mathbf{0}$ Decimals to 10 Decimals. The number of decimal places shown in TOOLS Calculator.

Using the Tools - Formating Objects

Description

Access

Formatting

Allows the internal memory, the System RAM and the application programs memory to be formatted. All data will be erased.

12:04	L1=8**
GPS900	-\% 8 L2=8 (f)
Main Ment	

CONT (F1)

To format a memory device. PROGS (F4)

To format the programs memory. SYSTM (F5)

To format System RAM memory. If the System RAM is formatted all system data such as almanac, user defined antennas, codelists, geoid field files and CSCS field files will be lost.
CONT $\quad \square$ PROGS SYSTM $\quad \square$

Field	Description of Field
Memory Device	The type of memory to be formatted. Data will be fully deleted.

22

Description

Access

Transfer Objects Menu

Using the Tools - Transferring Objects

This chapter describes the basic procedure for transferring objects between the CompactFlash card (RX900c), internal memory (RX900) and the System RAM. Refer to "Appendix C Directory Structure of the Memory Device" for information about file types and locations of files in the internal memory (RX900) or on the CompactFlash card (RX900c).


```
Main Menu
```

17:11
TooLS
Transfer Objects Menu
1 Codelists
2 Coordinate Systems
3 Geoid Field Files
4 CSCS Field Files
5 Format Files
6 System RAM Contents
7 Antenna Records
8 PZ-90-Transformation
CONT $\square \square \square$

To select an object for transfer.

Transferring

CONT (F1)

To accept the screen entries and continue. ALL (F3)

Available for some transfer object options. To transfer all objects.

Field	Description of Field
From	\bullet Memory device to transfer object from.
	\bullet CF Card. Transfer from CompactFlash card.
	\bullet System RAM. Transfer from System RAM.
	\bullet Internal Memory. Transfer from internal memory.
To	\bullet Memory device to transfer object to.
Codelist	\bullet To select the codelist to be transferred.
Coord Sys	\bullet To select the coordinate system to be transferred.

Field	Description of Field
File	- To select the geoid field file, the CSCS field file, the entire contents of the System RAM or the PZ90 transformation to be transferred, depending on the transfer option chosen. Each new GPS900 firmware will include the latest PZ-90 transformation, so that is normally not necessary to transfer a PZ90 transformation to or from a sensor. PZ90 is the GLONASS reference frame. For a combined processing (GPS \& GLONASS) a 7-parameter Helmert transformation is necessary to transform PZ90 into WGS84. The values for this transfomation are hard-coded, but can be changed by importing the file "PZ90trafo.dat" that is provided by LGO.
Format File	- To select the format files to be transferred.
Antenna	- To select the antenna records to be transferred.

Using the Tools - Uploading Software

Description

Access

Application programs, system languages and firmware can be uploaded. These files to be uploaded are stored in the \SYSTEM directory of the memory device.

Type	Upload		File extension
	From	To	
Programs	Internal memory	Programs memory	filename.a*
Instrument firmware		- ATX900 GG - RX900	filename.fw
System languages		RX900	Individual to each language


```
Main Menu
```

Uploading options

Uploading

Field	Description of Field
From	Upload from internal memory.
To	Upload to application programs memory, RX900 or ATX900 GG. Firmware List of firmware files stored in the internal memory. ATX900 GG must always be connected to RX900 when uploading ATX900 GG firmware. Connect ATX900 GG and Rome time.
Sanguage	List of language files stored in the internal memory. It is not possible to have more than three language files stored on the instrument. English is always available as the default language and cannot be deleted.
Version	List of program files stored in the internal memory.

24

Using the Tools - Viewing Data

Description

Access

Viewing the directory
Allows ASCll files in the internal memory to be viewed. The ASCII file can have a size of up to 500 KB. Refer to "Appendix C Directory Structure of the Memory Device" for more information on the contents of folders on the memory device.

The \DBX directory cannot be accessed to view files.

12:04	
GPS900	
\ain Menu	

$\frac{12: 31}{\text { TOOLS }}$		${ }_{9}{ }^{\text {og }} \mathrm{L} 2=$	$7{ }^{7 *}$			\square
Int Mem						X
File Name					ta	Time
Code			23.1	. 05		:58-
Config			23.1	. 05		:58
Convert			23.1	. 05		:58
Data			14.0	. 06		:39
dbg			24.0	. 06		:19
DBX			26.0	. 06		:50
Gps			23.1	. 05		:58
Gsi			23.1	. 05		:587
						a $\widehat{\sim}$
CONT	DIR	VIEW	DEL	M0		

CONT (F1)

To access a directory or to view a file. DIR (F2)

Available for a directory or .. being highlighted. To access the highlighted directory or to move up one directory.

VIEW (F3)

Available for a file being highlighted. To view the highlighted file. Accesses TOOLS View File: File Name.

DEL (F4)

Available for a file being highlighted. To delete the highlighted file.

MORE (F5)

To display information about the size of a directory or file.

Column	Description OF Column
File Name	- Directories and files are displayed if available. The file extension is shown for files. - \backslash at the beginning of a line indicates a directory. - .. is displayed at the top of the list if a directory has been accessed.
Data Time	- Date and Time of the directory or file.
Size/Free	- Size.

The next step

WHEN	THEN
quitting the screen	press ESC to return to the Main Menu screen.
accessing a directory	highlight the directory and press DIR (F2).
viewing a file	highlight the file and press VIEW (F3).

Viewing the file


```
309 549282.26 5248890.18 413.07
315548314.88 5247659.36 419.72
402550691.54 5247142.54 418.67
```


Keys	Function of Keys
\triangle	Moves up.
\oslash	Moves down.
D	Moves right.
\bigcirc	Moves left.

Understanding MapView

25.1

Description

MapView modes

Overview of MapView

- MapView is an interactive display feature embedded in the firmware but used by all application programs as well as MANAGE Data. MapView provides a graphical display of the survey elements which allows for a better overall understanding of how the data being used and measured relates to each other.
- Depending on the application program and where in the application program MapView is accessed from, different modes, and their associated functionality, are available.
- The displayed data in all modes of MapView can be shifted by using both the arrow keys and the touchscreen.

MapView is available in three modes:

Map mode:

Plot mode:

Survey mode:

- Available as the Map page in data management and some application programs.
- Is also available within some application programs, for example, the Reference Line application program.
- Can be used to view, select and edit points, lines and areas.
- Available as the Plot page in some application programs.
- Is available to view results in various application programs. For example, COGO application program.
- Available as the Map page in Survey, Stakeout and some other application programs.
- Same as Map mode but also shows the positions of the reference stations and the rover.
- Provides special functionality when staking out points.
- Can be used to select lines and areas.

Displayable data

Accessing MapView

The data displayed in MapView is defined by the application program through which it was accessed and the selections made in a MapView Configuration screen.

The MapView interactive display feature is accessed through the application program itself. Depending on the application program and from where in the application program MapView is accessed, different MapView modes are available.

25.2

Description

Accessing step-by-step

Step	Description
1.	
2.	Highlight a job from the list of jobs and press DATA (F5).
3.	Move to the Map page and press SHIFT CONF (F2).

Configuring the Points page

Configuring MapView

- Allows options to be set which are used as default options within MapView. These settings are stored within the configuration set and apply to all Map and Plot pages.
- Any changes made in a MapView Configuration screen affect the appearance of MapView in all application programs, not just the active application program.

Points Lines \& Areas Display】

```
Show Points : Yes|l
```

Display with Point Symbol

CONT (F1)
To accept the screen entries and continue. SYMBL (F3)

To view all point symbols and their descriptions.

PAGE (F6)

To change to the next page on the screen.

Field	Description of Field
Show Points	\bullet Yes or No. Determines if points are displayed in MapView.
Point ID	• Yes or No. Available for Show Points=Yes. Determines if the ID of a point is displayed.

Configuring the Lines\&Areas page

Show Areas : Yes 1 t

CONT (F1)

To accept the screen entries and continue.

PAGE (F6)
 To change to another page on the screen.

Field	Description of Field
Show Lines	\bullet Yes or No. Determines if lines are displayed in MapView.
Show Areas	\bullet Yes or No. Determines if areas are displayed in MapView.

Configuring the Display page

CONT (F1)

To accept the screen entries and continue. PAGE (F6)

To change to the next page on the screen.

Field	Description of Field
Show Pt Info	- When < 200 Pts. Point information is not shown when more than 200 points are displayed. As Configured. Point information is shown regardless of the number of points being displayed.
Datum View	- WGS 1984 or Local. Determines the datum in which the points are viewed.
Rotate $\mathbf{1 8 0}$	- Yes or No. Available for Datum View=Local. To rotate the map by 180 the top of north arrow is not rotated and still orientated towards
Toolbar	- On or Off. Determines if the toolbar of touch icons are displayed.

Field	Description of Field
Curr Pos Info	- Determines if certain information related to the current position are displayed on the lower left corner of the survey mode of MapView (only visible in survey mode). - None. No information is displayed in the map. - Point ID. Point ID of the current position. - Code. Code of the current position. - Attrib 01. User defined attribute. - Attrib 02. User defined attribute. - Attrib 03. User defined attribute. - Attrib 04. User defined attribute. - Attrib 05. User defined attribute. - Quality 3D. Current 3D coordinate quality of the computed position.
Show Path	- Yes or No. Displays the path of the rover as a dashed line.

The softkeys

Softkey	Description of Softkey
DONE (F2)	To deactivate the focus tool. Available in Map mode.
EDIT (F3)	To edit the highlighted point's parameters. Available in Map mode in MANAGE Data: Job Name, Map page.
FOCUS (F2)	To activate the focus tool and select a point without using the touch screen. Available in Map mode.
PAGE (F6)	To change to another page on this screen.
ZOOM+ (F4)	To zoom into the map. Pressing ESC stops the zooming process. All keys become active again.
ZOOM- (F5)	To zoom out of the map. Pressing ESC stops the zooming process. All keys become active again.
SHIFT CENTR (F4)	To centre the screen around the point with the current focus, or the focus tool if DONE (F2) is visible.
SHIFT CONF (F2)	To configure MapView. Accesses MapView Configuration.
SHIFT FILTR (F5)	To change the filter settings for Stakeout. Available in Map mode for FOCUS (F2).
SHIFT FIT (F3)	To fit all displayable data into the screen area.
SHIFT FIT R (F4)	To fit the results in the screen area. Available in Plot mode.
SHIFT RFRSH (F5)	To refresh the screen. Available in Plot and Survey mode.

25.4

The Scale bar

The North arrow

Symbol	Description of Symbol
出	North arrow. North is always orientated towards the top of the screen.

The Toolbar

The Point with focus

The Rover

Symbol	Description of Symbol
120	Scale of the current screen. The minimum is 0.5 m . There is no maximum for the zoom but the scale cannot display values greater than 99000 m . In this case the value displayed will be $>99000 \mathrm{~m}$.

Symbol	Description of Symbol
Touch icon toolbar.	

Symbol	Description of Symbol
100	The point that has the focus.

Symbol	Description of Symbol
$\bar{\sim}$	Available in survey mode. Position of the rover.

Description

Touch icons

MapView Components - The Toolbar

Touch icons are available in a toolbar, if Toolbar: On in MapView Configuration, Display page. The toolbar is always located on the left hand side of the screen. Some of the functions performed by the touch icons can also be replicated using a softkey in the same mode as when the touch icon appears. The softkey equivalent to each touch icon, if one exists, are indicated below.

Touch icon	Softkey	Description
SHIFT FIT (F3)	Available as a touch icon in map mode. The fit touch icon fits all displayable data into the screen area, using the largest possible scale.	
	-	The windowing touch icon zooms to a specified area window. An area window can be drawn by tapping on the top left and the bottom right corner of the area. This causes the screen to zoom to the selected area.

MapView Components - The Point Symbols

Points
When Show Points: Yes in MapView Configuration, points are displayed, in all modes, according to their class.

Symbol	Description
A	3D control point is a point of class CTRL with full coordinate triplet.
A	2D control point is a position only point of class CTRL.
,	Adjusted point is a point of class ADJ.
∇	Reference point is a point of class REF.
¢	Average point is a point of class AVGE.
\bigcirc	Measured point is a point of class MEAS.
荧	Single Point Position uploaded from LGO.
\square	Navigated point is a point of class NAV.
+	Estimated point is a point of class EST.
\oplus	Calculated COGO point is a point of class MEAS or CTRL depending on the COGO calculation method.

Points of class NONE or points of class CTRL/MEAS with a height only component cannot be displayed in MapView.

A list of the point types available, and their description, is available by pressing SYMBL (F3) in MapView Configuration, Points page.

Understanding HOT Keys, USER key, STATUS Key

26.1

Description

Access

Defining a hot key step-by-step

The HOT Keys

- Hot keys provide a shortcut for quickly and directly carrying out functions or starting programs. Assigning functions and programs to hot keys is user configurable.
- The hot keys are accessed by pressing F7, F8, ..., F12 directly.
- Hot keys can be pressed at any time. It is possible that a function or application program assigned to a hot key cannot be executed in certain situations.
- This example shows how to assign the STATUS Satellites screen to the F7 key.

Step	Description
1.	
2.	Using the choicelist assign STAT Satellite Status to the F7 key.
3.	Press CONT (F1) to return to the Main Menu screen.
4.	Press F7 to access the STATUS Satellites screen.

26.2

Description

Access

Defining the USER key

 step-by-step
The USER Key

- The USER key opens the User Menu screen which can be configured to contain the most used functions or programs.
- The USER key opens the User Menu screen. Selecting an option in the User Menu screen carries out the assigned function or starts the assigned program.
- The User Menu screen cannot be accessed while in a CONFIGURE screen.
- This example shows how to assign the STATUS Satellites screen to the 1 key.

Step	Description
1.	
2.	Using the choicelist assign STAT Satellite Status to the first line of the user menu.
3.	Press CONT (F 1) to return to the Main Menu screen.
4.	Press USER to access the user menu.
5.	Press 1 to access the STATUS Satellites screen.

26.3
26.3.1

Description

Access step-by-step

The Status Menu

The STATUS Key

The Status Menu
The STATUS functions help using the receiver by showing the state of many receiver functions. All fields are output fields. Unavailable information is indicated by -----.

Step	Description
1.	Press USER.
2.	Press STAT (F3) from the User Menu screen.

To select a status option and continue.
26.3.2

Description

The Rover page

Status Satellite Information

This screen shows information related to the satellites with the highest elevation angle.
Satellites below the Cut Off Angle configured in CONFIGURE Satellite Settings are shown in grey.

Softkey	Description of Softkey
CONT (F1)	To return to the Main Menu screen.
GPS X/GPS \checkmark (F2)	To hide or show the GPS satellites (shown by the prefix G). Available for ATX900 GG when Sat System: GPS \& GLONASS is configured in CONFIGURE Satellite Settings.
GLO X/GLO \checkmark (F3)	To hide or show the GLONASS satellites (shown by the prefix R). Available for ATX900 GG when Sat System: GPS \& GLONASS is configured in CONFIGURE Satellite Settings.
HELTH (F4)	To view the PRN numbers (GPS) or the Slot numbers (GLONASS) of satellites categorised in good, bad and unavailable.
MORE (F5)	To open and close a window showing the date of the used almanac, the number of satellites tracked as shown on the skyplot and the number of all satellites available above the cut off elevation mask as shown on the skyplot.
PAGE (F6)	To change to another page on the screen.

Column	Description of Column
Sat	The Pseudo Random Noise number (GPS) or the Slot number (GLONASS) of the satellites.

Column	Description of Column
Elev	The elevation angle in degrees. The arrows indicate if the satellite is rising or falling.
Azmth	The azimuth of the satellite.
S/N 1 and S/N 2	The signal to noise ratio on L1 and L2. The number is shown in brackets if the signal is currently not being used in the position calcu- lations.

The Skyplot page

The skyplot shows satellite information in a graphical way.
The part of the skyplot between the 0° elevation and the cut-off angle is marked grey.

Softkey	Description of Softkey
CONT (F1)	To return to the Main Menu screen.
GPS X/GPS \checkmark (F2)	To hide or show the GPS satellites (shown by the prefix G). Available for ATX900 GG when Sat System: GPS \& GLONASS is configured in CONFIGURE Satellite Settings.
GLO X/GLO \checkmark (F3)	To hide or show the GLONASS satellites (shown by the prefix R). Available for ATX900 GG when Sat System: GPS \& GLONASS is configured in CONFIGURE Satellite Settings.
MORE (F5)	To open and close a window showing the date of the used almanac, the number of satellites tracked as shown on the skyplot and the number of all satellites available above the cut off elevation mask as shown on the skyplot.
PAGE (F6)	To change to another page on the screen.

Symbol	Description of Symbol
$\overline{\text { Y }}$,	Satellites above the Cut Off Angle configured in CONFIGURE Satellite Settings.

The Reference page
The information about the satellites at the reference shown on this page is identical with the information shown on STATUS Satellites, Rover page.

26.3.3

Description
The General page

Status Real-Time Data Input
This screen shows information related to real-time data, for example the data link.

Softkey	Description of Softkey
CONT (F1)	To return to the Main Menu screen.
DATA (F4)	To view the data being received.
PAGE (F6)	To change to another page on the screen.

Field	Description of Field
R-Time Data	The received real-time data format message type.
GPS Used L1/L2	The number of satellites on L1 and L2 being used in the current posi- tion solution.
GLONASS Used L1/L2	Available for ATX900 GG when Sat System: GPS \& GLONASS is configured in CONFIGURE Satellite Settings. The number of satellites on L1 and L2 being used in the current position solution.
Last Received	Seconds since the last message from the reference was received.
In Last Minute	The percentage of real-time data received from the reference compared with the data received from the GPS antenna within the last minute. This indicates how well the datalink is working.
Ref Network	The type of reference network in use.

The Device Page

Softkey	Description of Softkey
CONT (F1)	To return to the Main Menu screen.
PAGE (F6)	To change to another page on the screen.

Field	Description of Field
Name	The name of the radio.
Type	The type of radio.
Port	The port to which the radio is connected.
Firmware	The software version of the attached radio.
Channel	The radio channel.
Actual Freq	The actual set frequency of the radio.

The Reference page

Softkey	Description of Softkey
CONT (F1)	To return to the Main Menu screen.
COORD (F2)	To view other coordinate types.
PAGE (F6)	To change to another page on the screen.

Field	Description of Field
Point ID	- \quad The point identification.
Ref Stn ID	An identification for a reference station. The ID can be converted into a compact format to be send out with real-time data in all real-time data formats. It is different from the point ID of the reference station.

Field	Description of Field
Antenna Ht	- For data format Leica or RTCM v3: The antenna height at the reference from the marker to the MRP. - For data format RTCM v2.3: ----- is displayed because the data format does not include information about the antenna height. - For data format CMR/CMR+: The antenna height at the reference from the marker to the phase center.
Coords of	- The coordinates for the reference station which are transferred depend on the active real-time data format. - For real-time messages which include antenna height and antenna type: Marker.
	- For real-time messages which do not include antenna Information: Phase Centre of Ll.
Ref Antenna	- The antenna used at the reference.
Ref Sensor	- The receiver type used at the reference.

Real-Time Input Data

The following provides additional information on the satellite data received via real-time message. Information of those satellites is displayed, which are used on both reference and rover.
Access - press DATA (F4) on STATUS Real-Time, General page.

Softkey	Description of Softkey
CONT (F1)	To return to the Main Menu screen.
SAT- (F2)	To display information about the satellite with the next smaller PRN.

Softkey	Description of Softkey
SAT+ (F3)	To display information about the satellite with the next larger PRN.

The data being received from the satellites and the layout of the screen depend on the active real-time data format.

Field	Description of Field
Sat PRN	The PRN number (GPS) or the slot number (GLONASS) of the satel- lites shown with the prefix G (GPS) or R (GLONASS).
Sat Time	The GPS time of the satellite.
Phase L1, Phase L2	The number of phase cycles from the antenna to the satellite on L1 and L2.
Code L1, Code L2	The pseudorange between the antenna to the satellite for L1 and L2.

Description

The Position page

The Baseline page The Speed page

This screen shows information related to the current antenna position and the speed of the antenna. The baseline vector is also shown. MapView shows the current position in a graphical format.

Softkey	Description of Softkey
CONT (F1)	To return to the Main Menu screen.
COORD (F2)	To view other coordinate types.
PAGE (F6)	To change to another page on the screen.

Field	Description of Field
Local Time	The local time.
Pos Latency	The latency of the computed position. Latency is mainly due to time required for data transfer and computation of position. Depends on the use of the prediction mode.
Pos Quality and Ht Quality	Available for phase fixed and code only solutions. The 2D coordinate and height quality of the computed position. Refer to "2.6 Termi- nology" for information on coordinate quality.
HDOP and VDOP	Available for navigated solutions.

Information on the baseline vector is displayed.

Field	Description of Field
Horizontal	The speed over ground in the horizontal direction.

Field	Description of Field
On Bearing	Available for local coordinate systems. The bearing for the horizontal direction related to the North direction of the active coordinate system.
Vertical	The vertical component of the actual velocity.

26.3 .5

The Battery page

Status Battery Level and Memory Usage

Softkey	Description of Softkey
CONT (F1)	To exit STATUS Satellites.
REF (F5)	To view the battery status of the reference.
PAGE (F6)	To change to another page on the screen.
Field	Description of Field
Any field	The percentage of remaining power capacity for all batteries are displayed numerically. Batteries not in use are shown in grey.

If no information for a field is available, then ----- is displayed.

Softkey	Description of Softkey
CONT (F1)	To return to the Main Menu screen.
REF (F5)	To view battery and memory information for the reference.
PAGE (F6)	To change to another page on the screen.

Field	Description of Field
Device Used	The memory device in use.
Mem CF Card	The total/free memory for data storage on the CompactFlash card.
Mem Internal	The total/free memory for data storage in the internal memory.
Mem Programs	The total/free system memory used for application programs.

Field	Description of Field
Mem System	The total/free system memory. The system memory stores: \bullet $\bullet \quad$ RX900 related files such as system settings.

The Instrument page

The Firmware page

Shows the type of RX900, the serial number, the equipment number, the ID of the receiver, the currently active system language, the serial number of the measurement engine, the availability of additional instrument hardware options such as event input, position rate, RTK range, L2C, Multipath Mitigation, GLONASS ready, GLONASS permanent and if the protected OWI commands have been activated by a licence key.

Shows the versions of all system firmware.

Field	Description of Field
Firmware	The version number of the firmware.
Build	The build number of the firmware.
Maintenance End	The expiry date of the software maintenance is shown.
Meas Engine	The firmware version for the measurement engine.
Meas Eng Boot	The firmware version of the boot software for the measurement engine.
Boot	The frimware version boot software.
LB2/OWI	The version of the LB2/OWI commands.
Navigation	The navigation firmware version with the algorithms for the signal processing.
API	The firmware version for the application program interface.
EF Interface	The firmware version for the electric front interface.

The Application page
Shows the versions of all uploaded application programs.

Description

Real-Time Input

Status Radio Information

This screen shows information related to the radio used to transfer real-time data.

Softkey	Description of Softkey
CONT (F1)	To return to the Main Menu screen.

Field	Description of Field
Name	The name of the radio.
Type	The type of radio.
Port	The port to which the radio is connected.
Firmware	The version number of the firmware.
Channel	The radio channel.
Actual Freq	The actual set frequency of the radio.
Signal	Indication of strength of received radio signal.

PART 2 - The Applications

27
27.1

Description

Working with COGO

An Overview of the Program

COGO is a program to perform COordinate GeOmetry calculations. This program calculates point coordinates, bearings between points and distances between points. It is a program for calculating rather than for measuring.

Changing the coordinates of a point which has been previously used in a COGO calculation, does not result in a previously calculated point being re-computed.

Access

A) starting the program

Starting the Program

 Main Menu

11:38	
COGO -	-1-8 L2= 8 自起
COGO Begin \times	
Job	job namedt
Coord System	m : coord sys name
Codelist	codelist name

CONT (F1)
To accept the screen entries and continue.

CONF (F2)

To configure the program.

DATA (F5)

To view, edit and delete points stored with the job.

CSYS (F6)

To select a different coordinate system.

Field	Description of Field
Job	• The active job.
Coord System	• The coordinate system currently attached to the selected Job.
Codelist	- This field is a choicelist when codes are not stored in the selected Job. This is field is an output when codes have already been stored in the selected Job. If codes had been copied from a System RAM codelist, then the name of the codelist is displayed. If codes have not been copied from a System RAM codelist but typed in manu- ally, then the name of the active job is displayed.

CONT (F1)

To select an option and continue. SHIFT CONF (F2)

To configure the program.

Menu option	Description of menu option
Inverse	To calculate the direction, the distance and the 3D coordinate differ- ences between two known points. Points with full coordinate triplets, position only points and height only points can be used.
Intersections	To calculate the position of an intersection point using: - Brng-Brng, bearings from two known points. - Brng-Dist, a bearing and a distance from two known points. - Dist-Dist, distances from two known points. - By Points, four points.
Line Calculations	To calculate the base point of the line using: - Calc Base Point, two known points and an offset point. To calculate the offset point of the line using:

Menu option	Description of menu option • Calc Offset Point, two known points that define the line, a distance along the line and an offset.
Arc Calculations	To calculate: - Calc Arc Center, the arc centre. - Calc Base Point, the base point of the arc. - Calc Offset Point, the offset point of the arc. The arc can be defined using: • three points. Known must be also, depending on the arc calculation method: • an offset point.

Starting
Calculating with Inverse

Diagram

Known
PO First known point
Pl Second known point
Unknown
a Direction from P0 to P1
dl Slope distance between P0 and P1
d2 Horizontal distance between P0 and P1
d3 Height difference between P0 and P1

Calculating with Inverse

Field	Description of Field
From	The point ID of the first known point. To type in coordinates for a known point open the choicelist. Press NEW (F2) to create a new point.
To	The point ID of the second known point. To type in coordinates for a known point open the choicelist. Press NEW (F2) to create a new point.
Azimuth	The direction from the first known point to the second known point.
HDist-Grid	The horizontal distance between the two known points.
Δ Height	The height difference between the two known points.
Slope Dist	The slope distance between the two known points.
Grade	The grade between the two known points.
Δ Easting	The difference in Easting between the two known points.
Δ Northing	The difference in Northing between the two known points.

27.4

Starting

Diagram of

 intersection method 1, Bearing-Bearing
Calculating with

Bearing-Bearing

Calculating with Intersections

Refer to section "27.2 Starting the Program" to select the Intersections menu option.

Known
PO First known point
Pl Second known point
al Direction from P0 to P2
a2 Direction from P1 to P2
Unknown
P2 COGO point (intersection point)

GPS900_038

Step 1 - inputing the data

Input Map|
Method
1st Point
Azimuth
2nd Point
Azimuth
Brng
Brng 1
1性
105.0000 g

2壮
$195.0000 \frac{\mathrm{~g}}{}$

Step 2 - storing/staking the results
Brng - Brng Results

Result [Code|Plot]
Point ID

Easting	$:$	208.5425 m
Northing	\vdots	91.4575 m
Ortho Ht	$:$	100.0000 m

		a $\widehat{1}$
STORE COORD	STAKE	PAGE

Diagram of

 intersection method 2, Bearing-Distance

Known
PO First known point
Pl Second known point
a Direction from PO to P2
r Radius, as defined by the distance P1 to P2
Unknown
P2 First COGO point (intersection point)
P3 Second COGO point (intersection point)

Calculating with
 Bearing-Distance

Step 1 - inputing the data

Input Mapl

 Method
Azimuth : 105.0000 g
2nd Point : $\quad 150.0000$ 㘳
HDist-Grid : $\quad 150.0000 \mathrm{~m}$

Step 2 - storing/staking the results

Result Code|Plot|
Point ID

Easting

295.8140 m

Northing
84.5891 m

Ortho Ht
100.0000 m
STORE COORD $\square \square$ STAKE PAGE

Diagram of intersection method 3, Distance-Distance

Known
PO First known point
Pl Second known point
r1 Radius, as defined by the distance P0 to P2
r2 Radius, as defined by the distance P1 to P2
Unknown
P2 First COGO point (intersection point)
P3 Second COGO point (intersection point)

Calculating with

 Distance-Distance
Step 1 - inputing the data

Intersection Input

Input Map]	
Method	Dist - Dists
1st Point HDist-Grid	$150.0000 \frac{1 \text { 少 }}{\mathrm{m}}$
2nd Point HDist-Grid	$150.0000 \frac{2 \mathrm{l}}{\mathrm{~m}}$

Step 2 - storing/staking the results

Result1|Code|Plot|
Point ID

Easting	$:$	243.5414 m
Northing	$:$	56.4586 m
Ortho Ht	$:$	100.0000 m

Diagram of intersection method 4, By Points

Known
PO First known point
P1 Second known point
P2 Third known point
P3 Fourth known point
a Line from P0 to P1
b Line from P2 to P3
Unknown
P4 COGO point (intersection point)

Calculating with By Points

Step 1 - inputing the data

Step 2 - storing/staking the results

Easting	$:$	148.7179 m
Northing	\vdots	148.7179 m
Ortho Ht	$:$	100.0000 m

STORE COORD	STAKE	PAGE

Description

 of all softkeys| Softkey | Description of Softkey |
| :--- | :--- |
| CALC (F1) | To calculate the result. |
| COORD (F2) | To view other coordinate types. |
| PAGE (F6) | To change to another page on the screen. |
| RSLT1/RSLT2 (F3) | To view the first and second result. |
| STAKE (F5) | To access the Stakeout program and stake the calculated point. |
| STORE (F1) | To store the result. |
| | |
| SHIFT CONF (F2) | To configure the program. |
| SHIFT ELL H (F2)
 SHIFT ORTH (F2) | To change between the ellipsoidal and orthometric height. |

Description of all input fields

Field	Description of Field
Method	The method for calculating the COGO point.
1st Point	The point ID of the first known point for the COGO calculation.
2nd Point	The point ID of the second known point for the COGO calculation.
3rd Point	The point ID of the third known point for the COGO calculation.
4th Point	The point ID of the fourth known point for the COGO calculation.
Azimuth	The direction from the known point to the calculated COGO point.
HDist-Grid	The grid distance from the known point to the calculated COGO point.

27.5

Starting

Diagram of line calculations method 1, Calc Base Point

Calculating with

 Calc Base PointCalculating with Lines
Refer to section "27.2 Starting the Program" to select the Line Calculations menu option.

Diagram of line calculations method 2, Calc Offset Point
aiculating with Calc Offset Point

Step 1 - inputing the data

Step 2 - storing/staking the results

Description of all softkeys

Softkey	Description of Softkey
CALC (F1)	To calculate the result.
COORD (F2)	To view other coordinate types.
PAGE (F6)	To change to another page on the screen.
RSLT1/RSLT2 (F3)	To view the first and second result.
STAKE (F5)	To access the Stakeout program and stake the calculated point.
STORE (F1)	To store the result.
SHIFT CONF (F2)	To configure the program.
SHIFT ELL H (F2) SHIFT ORTH (F2)	To change between the ellipsoidal and orthometric height.

Description of all input fields

Field	Description of Field
Task	The task for calculating the COGO point.
Start Point	The point ID of the start point of the known line.
End Point	The point ID of the end point of the known line.
Offset Point	The point ID of the offset point to the known line.
Δ Line-Grid	The horizontal distance from the start point to the base point.
Offset-Grid	The offset distance from the base point to the offset point.

27.6

Starting
Diagram of arc calculations method 1, Calc Arc Center

Calculating with Calc Arc Center

Calculating with Arcs
Refer to section "27.2 Starting the Program" to select the Arc Calculations menu option.

Known
P1 Start Point
P2 Second Point
P3 End Point
Unknown
P4 COGO point (arc center)

Step 1 - inputing the data
Arc Calculations Inputx

Input Map|

Step 2 - storing/staking the results

Result [Code|Plot]

Point ID
Easting
Northing Ortho Ht

Arc Radius
70.7107 m

Arc Length
333.2162 m

Diagram of arc calculations method 2, Calc Offset Point

Calculating with Calc Offset Point

Diagram of arc calculations method 3, Calc Base Point

Calculating with Calc Base Point

Known
Pl Start Point
P2 Second Point
P3 End Point
P5 Offset Point
Unknown
P4 COGO point (base point)

Step 1 - inputing the data

Step 2 - storing/staking the results

Description of all softkeys

Softkey	Description of Softkey
CALC (F1)	To calculate the result.
COORD (F2)	To view other coordinate types.
PAGE (F6)	To change to another page on the screen.
RSLT1/RSLT2 (F3)	To view the first and second result.
STAKE (F5)	To access the Stakeout program and stake the calculated point.
STORE (F1)	To store the result.
SHIFT CONF (F2)	To configure the program.
SHIFT ELL H (F2) SHIFT ORTH (F2)	To change between the ellipsoidal and orthometric height.

Description of all input fields

Field	Description of Field
Task	The task for calculating the COGO point.
Start Point	The point ID of the start point of the known arc.
Second point	The point ID of the second point of the known arc.
End Point	The point ID of the end point of the known arc.
Offset Point	The point ID of the offset point to the known arc.
$\boldsymbol{\Delta A r c D i s t - G r i d ~}$	The horizontal distance from the start point to the base point.
$\boldsymbol{\Delta}$ Offset-Grid	The offset distance from the base point to the offset point.

Configuring

Configuring the Program

$\frac{11: 47}{\operatorname{cog} 0}$	
Configuration 区	
Parameters	
Est Pos Qlty Est Ht Q1ty	0.3000 m
	CONT (F1) To accept the screen entries and continue. SHIFT ABOUT (F5)
	To display information about the program name, the version number, the date of the
CONT	a介 version, the copyright and the article
	number.
Field	Description of Field
Est Pos Qlty	The estimated value for the position quality assigned to all calculated COGO points which is used for the averaging calculation.
Est Ht Qlty	The estimated value for the height quality assigned to all calculated heights which is used for the averaging calculation.

Working with Determine Coord System

Description

Transformations

An Overview of the Program

- GPS measured points are always stored based on the global geocentric datum known as WGS 1984. Most surveys require coordinates in a local grid system, for example, based on a country's official mapping datum or an arbitrary grid system used in a particular area such as a construction site. To convert the WGS 1984 coordinates into local coordinates a coordinate system needs to be created. Part of the coordinate system is the transformation used to convert coordinates from the WGS 1984 datum to the local datum.
- The Determine Coordinate System application program allows:
- the parameters of a new transformation to be determined.
- the parameters of an existing transformation to be recomputed.

A transformation is the process of converting coords from one geodetic datum to another.

Transformation requirements

- Transformation parameters.
- In some cases a local ellipsoid.
- In some cases a map projection.
- In some cases a geoid model.

Transformation parameters

A transformation consists of a number of shifts, rotations and scale factors, depending on the type of transformation used. Not all of these parameters are always required. These parameters may already be known, or may need to be computed.

Description of transformations

A Onestep transformation is provided on RX900.
\(\left.\left.$$
\begin{array}{|l|l|}\hline \text { Characteristic } & \text { Description } \\
\hline \text { Principle } & \begin{array}{l}\text { Transforms coordinates directly from WGS } 1984 \text { to local grid and vice } \\
\text { versa without knowledge about the local ellipsoid or the map projec- } \\
\text { tion. Procedure: } \\
\text { 1. The WGS 1984 coordinates are projected onto a temporary } \\
\text { Transverse Mercator projection. The central meridian of this } \\
\text { projection passes through the centre of gravity of the common } \\
\text { control points. }\end{array} \\
\text { 2. The results of 1. are preliminary grid coordinates for the } \\
\text { WGS 1984 points. }\end{array}
$$\right\} \begin{array}{l}3. These preliminary grid coordinates are matched with the local

grid control points in order to compute the Easting and Northing

shifts, the rotation and the scale factor between these two sets

of points. This is known as a classic 2D transformation.

4. The height transformation is a single dimension height approxi-

mation.\end{array}\right\}\)| The position and height transformations are separated. |
| :--- |

Characteristic	Description Requirements - The position is known in WGS 1984 and in the local system for at least one point. Three or more points are recommended in order to obtain redundancy.
	Additional height information for one point enables the transfor- mation of heights.
	Parameters of the local geoid model. This is not compulsory. - No parameters of the local ellipsoid.
- No parameters of the local map projection.	

Characteristic	Description
	- One point: Heights are shifted to fit to the height control point. - Two points: Average height shift between the two height control points. - Three points: Tilted plane through the three height control points to approximate the local heights. - More than three points: Best fitting average plane.
Advantage	- Errors in height do not propagate into errors in position since the height and position transformations are separated. - If local heights have low accuracy or do not exist, a transformation of position can still be calculated and vice versa. - The height points and position points do not have to be the same points. - No parameters of the local ellipsoid and map projection is required. - Parameters may be computed with a minimum of points. Care should be taken when computing parameters using just one or two local points as the parameters calculated are valid in the vicinity of the points used for the transformation.
Disadvantage	- Restriction in the area over which the transformation can be applied. This is mainly due to the fact that there is no provision for scale factor in the projection. - The accuracy in height depends on the undulation of the geoid. The bigger the geoid variations the less accurate the results are.

Requirements to determine a transformation

- To determine a transformation it is necessary to have common control points whose positions are known in both WGS 1984 coordinates and local coordinates.
- The more points that are common between datums the more accurately the transformation parameters can be calculated. Depending on the type of transformation used, details about the map projection, the local ellipsoid and a local geoidal model may also be needed.
- The control points used for the transformation should surround the area for which the transformation is to be applied. It is not good practice to survey or convert coordinates outside of the area covered by the control points as extrapolation errors may be introduced.
- When a geoid field file is used in the determination of a coordinate system, the control points for the calculation must fall within the areas of the field files.
28.2

Access

A) starting the program

Name
WGS84 Pts Job: \quad wgs 84 job少
Local Pts Job: local job䍜
Method : Normall 1

CONT (F1)
To accept the screen entries and continue. CONF (F2)

To configure the program.
CSYS (F6)
To choose a coordinate system to edit. Only available for Method=Normal.

Field	Description of Field
Name	- A unique name for the coordinate system. The name may be up to 16 characters in length and may include spaces. Entering the name of a coordinate system will allow that existing system to be updated.
WGS84 Pts Job	-The job from which the points with WGS84 coordinates will be taken. Local Pts Job - The job from which the points with local coordinates will be taken. Method - Method used to determine the coordinate system.

Field	Description of Field$\|$• Normal. One or more control points for both the WGS 1984 and the local datum.
One Pt Localistn. One control point for both the WGS 1984 and the local datum.	

B) selecting method

IF the method is	THEN
Normal	- to determine a new coordinate system: - enter the name of the new coordinate system, - select the appropriate jobs, - select Method=Normal and continue with sec 28.3. - to update an existing coordinate system: - enter the name of the existing coordinate system or press CSYS (F6) to select the existing coordinate system, - select the appropriate jobs, - select Method=Normal and continue with sec 28.4.
One Pt Localistn	- to determine a new coordinate system: - enter the name of the new coordinate system, - select the appropriate jobs, - select Method=One Pt Localistn and continue with sec 28.5 .

28.3

Starting

Step 1)

 choosing height typeDetermining a New Coord System using the Normal Method

Refer to section "28.2 Starting the Program" to select the Normal method.

Transfrm Name: new coord system Transfrm Type: Onestep

Height Hode : Ellipsoidal非

Field	Description of Field
Transfrm Name	- A unique name for the transformation. The name may be up to 16 characters in length and may include spaces. If a coordinate system is being updated then its name is displayed.
Transfrm Type	- The type of transformation to be used when determining a coordinate system.
Height Mode	- The height mode to be used in the determination of a coordinate system. - Orthometric or Ellipsoidal. Available when determining a new coordinate system.

Step 2) choosing geoid model

Geoid Model
 <None> 1

CONT	
Field	Description of Field
Geoid Model	The geoid model to be used in the transformation.

Step 3)
matching the points

CALC (F1)
To confirm the selections, compute the transformation and continue with the next screen.
NEW (F2)
To match a new pair of points. This pair is added to the list.
EDIT (F3)
To edit the highlighted pair of matched points.
DEL (F4)
To delete the highlighted pair of matched points.
MATCH (F5)
To change the type of match for a highlighted pair of matched points.
AUTO (F6)
To scan both jobs for points that have the same point ID. Points with matching point ID's are added to the list.

Column	Description of Column
WGS84 Pts	The point ID of the points chosen from WGS84 Pts Job.
Local Pts	The point ID of the points chosen from Local Pts Job.
Match	The type of match to be made between the points. This information is used in the transformation calculation. Position \& Height, Position only, Height only or None.

Column	Description of Column None removes matched common points from the transformation calculation but does not delete them from the list. This can be used to help improve residuals.

This screen provides a list of points chosen from WGS84 Pts Job and Local Pts Job. The number of control points matched between both jobs is indicated in the title. Unless there is no pair of matching points in the list all softkeys are available.
Step 4)
checking the residuals

$\frac{11: 38}{\mathrm{DET} \mathrm{C} \mathrm{SYS}}$			$\begin{array}{ll} \hline 8 & \square \\ \text { 上i } \end{array}$
Step 4: Check Residuals 区			
WG584 Pts		East[m]	North[m]
W001		-0.057?	0.065 ?
W002		0.006	-0.068
w003		0.050 ?	0.003
CONT	RESLT		

CONT (F1)

To accept the screen entries and continue.

RESLT (F3)

To view results of the transformation. MORE (F5)

To display information about height residuals.

Column	Description of Column
WGS84 Pts	The point ID of the points chosen from WGS84 Pts Job.
East	The Easting residual. If positions were not used in the transformation calculation then ----- will be displayed.

Column	Description of Column
North	The Northing residual. If positions were not used in the transforma- tion calculation then ---- will be displayed.
Height	The Height residual. If heights were not used in the transformation calculation then ---- will be displayed.
$!$	Indicates residuals that exceed the residual limit defined in DET C SYS Configuration, Residuals page.
$!$	Indicates the largest residual in East, North and Height.

The next step

IF	THEN
the residuals are unacceptable	press ESC to return to step 3. Matched points can be edited, deleted or temporarily removed from the list and the transformation recalcu- lated.
the transformation results are to be checked	press RESLT (F3) to display the transformation results. Results of the transformation between the WGS 1984 datum and the local datum are shown for each of the transformation parameters.
the residuals are acceptable	press CONT (F1) to continue to step 5.

Transformation Results

Position|Height|

Shift dX	\vdots	$\mathbf{2 5 1 6 9 4} \mathbf{l} 1710 \mathrm{~m}$
Shift dY	$:$	$\mathbf{7 5 6 8 1 0 . 6 7 3 5} \mathrm{m}$

Rotation : $\quad-5464.17235$ "

Scale	:	35.2934 ppm
Rot Orig X	$:$	4.2762 m
Rot Orig Y	$:$	5.8048 m
CONT		

CONT (F1)
To return to step 4.
SCALE (F4) or PPM (F4)
Available on the Position page. To switch between Scale displaying the true scale and displaying the ppm.
RMS (F5) or PARAM (F5)
To switch between the root mean square values of the parameters and the actual parameter values.
PAGE (F6)
To change to another page on the screen.

Field	Description of Fields for the Position page
Shift dX	Shift in X direction.
Shift dY	Shift in Y direction.
Rotation	Rotation of transformation.
Scale	Scale factor used in transformation. Either true scale or ppm.
Rot Orig X	Position in the X direction of the origin of rotation.
Rot Orig Y	Position in the Y direction of the origin of rotation.

Field	Description of Fields for the Height page
Slope in X	Tilt of the transformation in the X direction.

Field	Description of Fields for the Height page
Slope in Y	Tilt of the transformation in the Y direction.
Height Shift	Shift in height between WGS 1984 datum and local datum.

Step 5)

storing the results

Field	Description of Fields for the Coord System page
Residuals	- None, $\mathbf{1 / D i s t a n c e ~}{ }^{\mathrm{XX}}$ or Multiquadratic.The method by which the residuals of the control points will be distributed throughout the transformation area.
Geoid Model	- Name of geoid model used, as defined in step 2.

Starting

Selecting the existing

 coordinate systemUpdating the existing coordinate system

Updating an Existing Coord System using the Normal Method
Refer to section "28.2 Starting the Program" to select the Normal method.
Refer to section "28.2 Starting the Program" to enter or select the existing coordinate system.

The steps to follow are identical to those when determining a new coordinate system using the Normal method. Refer to "28.3 Determining a New Coord System using the Normal Method", from step 3 onwards.

Starting

Step 1)

choosing height type

Determining a New Coord System using the One Pt. Local. Method
Refer to section "28.2 Starting the Program" to select the One Point Localisation method.

Transfrm Name: new coord system Transfrm Type: Onestep

Height Mode : Ellipsoidal性

Field	Description of Field
Transfrm Name	• A unique name for the transformation. The name may be up to 16 characters in length and may include spaces.
Transfrm Type	-The type of transformation to be used when determining a coor- dinate system. Height Mode •The height mode to be used in the determination of a coordinate system. Orthometric or Ellipsoidal. Available when determining a new coordinate system.

Step 21 choosing geoid model

Geoid Model
 <None> 1

CONT		Description of Field
Field	The geoid model to be used in the transformation.	
Geoid Model	To accept the screen entries and continue.	

Step 3） choosing common pt

$\frac{12: 02}{\text { DET C SYS }}-\frac{1}{-}$	
Step 3：Choose Common Point	
Match Type	Pos Onlydr
WG584 Point	W001的
Known Point	1001相
Match Height	Yes性
WG584 Point	w002 米
Known Point	1002

Field	Description of Field
Match Type	－How the horizontal and vertical shifts of the transformation should be computed． －Pos \＆Height．Position and height are taken from the same pair of matching points． －Pos Only．Position is taken from one pair of matching points．The height can be taken from another pair of matching points．
WGS84 Point	－Choicelist．The point ID of the horizontal and／or vertical control point chosen from WGS84 Pts Job．All WGS 1984 points can be selected．
Known Point	－Choicelist．The point ID of the horizontal and／or vertical control point chosen from Local Pts Job．All local points can be selected．

Field	Description of Field
Match Height	- Yes or No. Available for Match Type=Pos Only. Activates the determination of the vertical shift from a separate pair of matching points.

Step 4) determining rotation


```
Method : Use WGS84 North11
```


Field	Description of Field
Method	• Use WGS84 North, User Entered, Convergnce Angle or Two WGS84 Points. Method by which the rotation angle for the transformation is determined.
When Method=Use WGS84 North, the following fields apply:	
Rotation	Ouput. Transformation will be rotated to North as defined by the WGS 1984 datum. North is 0.00000°.
When Method=User Entered, the following fields apply:	

Field	Description of Field
Rotation	- User Input. Allows the orientation of the transformation to be manually typed in.
When Method=Convergnce Angle, the following fields apply:	
Coord System	- Choicelist. Coordinate system to provide the direction of grid North in the area where the control point used for determining the local coordinate system, is located.
WGS84 Point	- Choicelist. WGS 1984 point of which the convergence angle will be calculated.
Rotation	- Output. The rotation of the transformation calculated as 0.00000° minus the computed convergence angle.
When Method=Two WGS84 Points, the following fields apply:	
Point 1	- Choicelist. First WGS 1984 point to use for computation of Azimuth.
Point 2	- Choicelist. Second WGS 1984 point to use for computation of Azimuth.
Azimuth	- Output. Computed azimuth between Point 1 and Point 2.
Reqd Azimuth	- User input. The required grid azimuth, computed between two local points.
Rotation	- Output. The rotation of the transformation calculated as Reqd Azimuth minus Azimuth.

Step 5)
determining scale

Field	Description of Field
Scale	$\bullet \quad$ User Input. Allows the scale factor to be typed in manually.

Step 6)
storing the results

Field	Description of Field
Name	A unique name for the coordinate system. The name may be up to 16 characters in length and may include spaces.
Shift dX	Shift in X direction.
Shift dY	Shift in Y direction.
Rotation	Rotation of transformation.
Scale	Scale factor of transformation.
Rot Orig X	Position in the X direction of the origin of rotation.
Rot Orig Y	Position in the Y direction of the origin of rotation.

28.6

Configuring

Configuring the Program

Field	Description of Field
Easting, Northing or Height	- The limit above which Easting/Northing/Height residuals will be flagged as possible outliers.
Residual Distbtn	- The method by which the residuals of the control points will be distributed throughout the transformation area. - None. No distribution is made. Residuals remain with their associated points. - $\mathbf{1 / D i s t a n c e}{ }^{\mathrm{Xx}}$. Distributes the residuals according to the distance between each control point and the newly transformed point. - Multiquadratic. Distributes the residuals using a multiquadratic interpolation approach.

Description

Working with GPS Resection

An Overview of the Program

GPS Resection is a program which is:

- used to create and apply a onestep coordinate system to the active job.
- designed to provide an orientation to a GPS job in a similar method to a TPS resection.

This program is specifically aimed at those users who are:

- new to real-time GPS surveying.
- unfamiliar with the concepts of coordinate systems and geoids.
- familiar with the knowledge of TPS surveying and the ideas of setup and orientation.
29.2

Access

Starting the program

Starting the Program

```
lol
Main Menu
```



```
Name
GPS Resection
```

```
Job
```

Job

```
Default罗
```

```
Default罗
```

CONT

Field	Description of Field
Name	A unique name for the coordinate system. The name may be up to 16 characters in length and may include spaces.
Job	The job from which the points with local coordinates and with WGS84 coordinates will be taken.

Step 1) measuring the local points using WGS84 coordinates

OCUPY (F1)

To start measuring the WGS84 point. The position mode icon changes to the static icon. (F1) changes to STOP.
STOP (F1)
To end measuring the WGS84 point. When Auto STOP: Yes in CONFIGURE Point Occupation Settings, the measurement ends automatically as defined by the stop criteria. The position mode icon changes to the moving icon. (F1) changes to STORE.

STORE (F1)

To store the measured point. When Auto STORE: Yes in CONFIGURE Point Occupation Settings, the measured point is stored automatically. (Fl) changes to OCUPY.
COORD (F2)
To view other coordinate types. SHIFT ELL H (F2) or SHIFT ORTH (F2)

To change between the ellipsoidal and the orthometric height.

Field	Description of Field
Point ID	- The point ID of the known local point.
Antenna Ht	- The antenna height.

Column	Description of Column
Match	The type of match to be made between the WGS84 and the known local point. This information is used in the transformation calcula- tion. Position \& Height, Position Only, Height Only. None removes the highlighted point from the transformation calcu- lation but does not delete it from the list. This can be used to help improve residuals.

Step 3)
checking
the calculated residuals

STORE (F1)

To accept the screen entries and continue. MORE (F5)

To display information about height residuals.

Column	Description of Column
Points	The point ID of the points used in the calculation.
East	The Easting residual. If positions were not used in the transformation calculation then ----- will be displayed.

Column	Description of Column
North	The Northing residual. If positions were not used in the transforma- tion calculation then ----- will be displayed.
Height	The Height residual. If heights were not used in the transformation calculation then ---- will be displayed.
$!$	Indicates residuals that exceed the residual limit.
$!$	Indicates the largest residual in East, North and Height.

The next step

IF the residuals are	THEN
unacceptable	press ESC to return to step 2. The points can be edited, deleted or temporarily removed from the list and the transformation recalcu- lated.
acceptable	press STORE (F1) to store the coordinate system and attach it to the active job.

Step 4)
storing the calculated results

Press STORE (F1) to store the coordinate system and attach it to the active job.

Working with Reference Line

30.1

Description

Point types

An Overview of the Program

Reference Line is a program which can be used for the following tasks:

- Measuring to a line/arc where the coordinates of a target point can be calculated from its position relative to the defined reference line/arc.
- Staking to a line/arc where the position of a target point is known and instructions to locate the point are given relative to the reference line/arc.

Reference lines/arcs can be created from points stored as:

- WGS 1984 geodetic
- Local grid

Points must have full coordinate triplets. Heights and positions are always considered.

Terms
 Defining a reference line/arc

Coordinate systems

Direction of values

It is possible to define an arc that has an opening angle of more than 180°.
It is possible to use a valid coordinate system but have the line or part of the line lying outside of the projection. In these cases the output fields of all prompts relating to the difference in coordinates between the point being staked and the current position are shown as -----.

The following diagram shows the direction of positive and negative values for distance and height differences between the target point and the reference point for reference lines.

PO Start point
P1 End point
P2 Target point
P3 Reference point
30.2

Access
A) starting the program

Starting the Program

```
\12:04 \
```


			a $\hat{\text { tr }}$	CSYS (F6)
CONT	CONF	DATA	CSYS	

Field	Description of Field Output. Codes have already been stored in the selected Job. If codes had been copied from a System RAM codelist, then the name of the codelist is displayed. If codes have not been copied from a System RAM codelist but typed in manually, then the name of the active job is displayed.

B) choosing the task and the reference line

To accept the screen entries and continue. SLOPE (F3)

To define the slope.

PAGE (F6)

To change to another page on the screen.

Field	Description of Field
Task	$\bullet \quad$ Defines the task to be performed.
	\bulletMeasure to Line or Measure to Arc. Calculates the coordinates of a point from it's position relative to the reference line/arc. Stake to Line or Stake to Arc. Allows points to be staked rela- tive to the reference line/arc.

Field	Description of Field
Start Point	- The start point of the reference line/arc.
Second Point	- The second point of the reference arc.
End Point	- The end point of the reference line/arc.
Line Length	- The horizontal grid distance between Start Point and End Point of the line. \qquad is displayed if the distance cannot be calculated.
Arc Dist	- The horizontal grid distance along the arc between Start Point and End Point of the arc. \qquad is displayed if the distance cannot be calculated.

30.3

Description

Diagram 1

 measuring to a line, horizontally
Measuring to a Reference Line/Arc

The horizontal and vertical position and the chainage of a manually occupied point can be calculated relative to the defined reference line/arc.

PO Start point
P1 End point
P2 Measured point
P3 Reference point
dl Δ Offset
d2 $\boldsymbol{\Delta}$ Line

Diagram 2

measuring to a line, vertically

Diagram 3 measuring to an arc, horizontally

Target point inside arc

GPS900_022

PO Start point
P1 End point
P2 Measured point
P3 Reference point
dl Δ Offset
d2 Δ Arc

Target point outside arc

Diagram 4
measuring to an arc, vertically

Measuring the points

PO Start point
P1 End point
P2 Measured point
P3 Reference point with Design Ht
d1 $\boldsymbol{\Delta H t}$-Design

OCUPY (F1)
To start measuring the point. The position mode icon changes to the static icon. (F1) changes to STOP. The difference between the current position and the point being staked is still displayed.
STOP (F1)
To end measuring the point. When Auto STOP: Yes in CONFIGURE Point Occupation Settings, the measurement ends automatically as defined by the stop criteria. The position mode icon changes to the moving icon. (F1) changes to STORE.

STORE (F1)

To store the measured point. When Auto STORE: Yes in CONFIGURE Point Occupation Settings, the measured point is stored automatically. (F1) changes to OCUPY.

PAGE (F6)

To change to another page on the screen. SHIFT CONF (F2)

To configure the reference line/arc. Avail-
able for OCUPY (F1) being displayed.
SHIFT QUIT (F6)
To exit Reference Line application program.

Field	Description of Field
Point ID	The point ID of the point to be measured.
Antenna Ht	The height of the antenna that is being used. The changed antenna height is used until the application program is exited.
Δ Offset	Perpendicular offset from the reference line/arc measured from the refer- ence point to the measured point. For reference arcs, the smallest Δ Offset possible is calculated. To ensure this the arc will be extended if necessary. Refer to paragraph "Diagram 3 measuring to an arc, horizontally".
Δ Line	Horizontal distance along the reference line from the start point to the reference point.
Δ Arc	Horizontal distance along the reference arc from the start point to the reference point.

Field	Description of Field
Δ Ht-Design	Height difference between the Design Ht and the height of the measured point.
Design Ht	Allows input of the design height of the target point.

30.4

Description

Diagram 1

staking to a line, horizontally

Staking to a Reference Line/Arc

Allows for the position of a point to be defined relative to a reference line/arc and then staked.

P0 Start point
P1 End point
P2 Target point
P3 Reference point
dl Stake Offset
d2 Along Line

Diagram 2
staking to a line, vertically

PO Start point
P1 End point
P2 Target point
P3 Reference point with Design Ht

Diagram 3 staking to an arc, horizontally

P0 Start point
P1 End point
P2 Target point
P3 Reference point
dl Stake Offset
d2 Along Arc

Diagram 4
staking to an arc, vertically

Step 1)

Entering the offsets

GPS900_024

PO Start point
P1 End point
P2 Target point
P3 Reference point with Design Ht

CONT (F1)

To accept the screen entries and continue.

To configure the reference line/arc.

Field	Description of Field
Point ID	The point ID of the target point to be staked.
Stake Offset	The offset from the reference point to the target point.
Along Line	Available for Task=Stake to Line. Horizontal distance from the start point to the reference point along the reference line.
Along Arc	Available for Task=Stake to Arc. Horizontal distance from the start point to the reference point along the reference arc.
Design Ht	Allows input of the design height of the target point.

Step 2)
Staking the points

OCUPY (F1)

To start measuring the point being staked. The position mode icon changes to the static icon. (F1) changes to STOP. The difference between the current position and the point being staked is still displayed.
STOP (F1)
To end measuring the point being staked. When Auto STOP: Yes in CONFIGURE Point Occupation Settings, the measurement ends automatically as defined by the stop criteria. The position mode icon changes to the moving icon. (F1) changes to STORE. STORE (F1)

To store the measured point. When Auto STORE: Yes in CONFIGURE Point Occupation Settings, the measured point is stored automatically. (F1) changes to OCUPY.

REVRS (F3)

To reverse the graphical display top to bottom. A reversed graphical display can be used when the point to be staked lies behind the current position.

PAGE (F6)

To change to another page on the screen. SHIFT CONF (F2)

To configure the reference line/arc. Available for OCUPY (F1) being displayed.
SHIFT QUIT (F6)
To exit Reference Line application program.

Field	Description of Field
First field on the screen	The point ID of the point to be staked.
hA	The default antenna height. The changed antenna height is used until the application program is exited.
FORW	The horizontal distance from the current position to the point to be staked in the direction of the orientation.
BACK	The horizontal distance from the current position to the point to be staked in the reverse direction of the orientation.
RGHT	Horizontal distance from the current position to the point to be staked orthogonal to the right of the orientation direction.
LEFT	Horizontal distance from the current position to the point to be staked orthogonal to the left of the orientation direction.

Field	Description of Field
CUT	The negative height difference from the height of the current posi- tion to the height of the point to be staked. To move down.
FILL	The positive height difference from the height of the current position to the height of the point to be staked. To move up.
D Ht	The design height, which is the orthometric height of the point to be staked, is displayed. If the orthometric height cannot be displayed, the local ellipsoidal height is displayed. If it is not possible to display the local ellipsoidal height, the WGS 1984 height is displayed. Changing the value for D Ht changes the values displayed for CUT and FILL.
3DCQ	Available for code and phase fixed solutions. The current 3D coordi- nate quality of the computed position.
PDOP	Available for autonomous solutions. The current PDOP of the auton- omous solution.

Configuring orientation

Configuring the Program

CONT (F1)

To accept the screen entries and continue. PAGE (F6)

To change to another page on the screen. SHIFT ABOUT (F5)

To display information about the application program name, the version number, the date of the version, the copyright and the article number.

Field	Description of Field Orientate - The reference direction to be used to stakeout points. The stakeout elements and the graphical display shown in the Refer- ence Line application program are based on this selection. To North. The North direction shown in the graphical display based on the active coordinate system. To Sun. The position of the sun calculated from the current posi- tion, the time and the date. - To Last Point. Timewise the last recorded point. If no points are yet staked, Orientate: To North is used for the first point to be staked.

Field	Description of Field
	- To Point(Stake). A point from Control Job selected in REFLINE Reference Line/Arc Begin. - To Point(Store). A point from Job selected in REFLINE Reference Line/Arc Begin. - To Line/Arc. The direction of the orientation is parallel to the reference line or the reference arc. - To Arrow. The direction of the orientation is from the current position to the point to be staked. The graphical display shows an arrow pointing in the direction of the point to be staked.
To	- To select the point to be used for orientation. Available for Orientate=To Point(Stake) and Orientate=To Point(Store).

Configuring the checks

Field	Description of Field
Pos Check	- Yes or No. Allows a check to be made on the horizontal coordinate difference between the manually occupied staked point and the point to be staked. If the defined Pos Limit is exceeded, the stakeout can be repeated, skipped or stored.
Pos Limit	- User input. Available for Pos Check=Yes. Sets the maximum horizontal coordinate difference which is accepted in the position check.
Height Check	- Yes or No. Allows a check to be made on the vertical difference between the manually occupied staked point and the point to be staked. If the defined Height Limit is exceeded, the stakeout can be repeated, skipped or stored.
Height Limit	- User input. Available for Height Check=Yes. Sets the maximum vertical difference accepted in the height check.
Beep near Pt	- Yes or No. The RX900 beeps when the horizontal radial distance from the current position to the point to be staked is equal to or less than defined in Dist from Pt.
Dist from Pt	- User input. Available for Beep near Pt=Yes. The horizontal radial distance from the current position to the point to be staked when a beep should be heard.

31.1

Description

Working with Setup Reference

An Overview of the Program

Setup Reference is a program to configure GPS900 as a reference station. After completing the program, the reference station is operating and RX900 switches to rover mode and can be used for all rover applications.

31.2

Access

Starting the program

Starting the Program

CONT (F1)
To accept the screen entries and continue. DATA (F5)

To view, edit and delete points stored with the job.

CONT	DATA	$\begin{gathered} \mathrm{a} \widehat{\\|} \\ \operatorname{csy} \end{gathered}$	CSYS (F6) To select a different coordinate system.

Field	Description of Field
Job	The active job.
Coord System	The coordinate system currently attached to the selected Job.
Codelist	Choicelist. No codes are stored in the selected Job. Output. Codes have already been stored in the selected Job. If codes had been copied from a System RAM codelist, then the name of the codelist is displayed. If codes have not been copied from a System RAM codelist but typed in manually, then the name of the active job is displayed.

Step 1)
selecting the antenna

11:38			
SETUP REF			
Reference:	Set Antenna		X

```
Antenna : ATX900 Tripod目
ID Address : 01d1d1d1
Device : 1231 ATX900
```

CONT (F1)
To accept the screen entries and continue. SRCH (F4)

To search for all available Bluetooth devices.
CONT \square SRCH \square If more than one Bluetooth device is found a

Field	Description of Field
Antenna	Antennas in the RX900 System RAM.
ID Address	The type of antenna to be used. This is fixed.
Device	The ID address of the ATX900 GG to be used. This is fixed.

Step 2) setting the radio channel

15:21		
CONFIGURE		
adio C		

Radio Type	$:$
Channel	Satelline 3AS
Actual Freq	
	$\mathbf{7}$
	433.7000 MHz

CONT (F1)
To accept the screen entries and continue.

SCAN (F5)

To scan for the radio at the reference.

Field	Description of Field
Radio Type	- The type of radio. Depending on the radio attached to the RX900, the Radio type will be switched automatically: - IFR-300L \bullet - Intuicom 1200 DL - SacificCrest PDL
Channel	- Satelline 3AS
The radio channel. The channel used must be within minimum and	
maximum allowed input values. The minimum and maximum	
allowed input values for a radio depend on the number of chan-	
nels supported by the radio and the spacing between the chan-	
nels. Type in the radio channel.	

Step 3)
selecting the
reference point

$\frac{13: 11}{\text { SETUP REF }}-\frac{1}{\mathbf{1}}$		
Set Up Reference Station X		
Point ID	00011t CONT (F1)	
Antenna Ht	1.5850 m	To accept the screen entries and continue. COORD (F2) To view other coordinate types. LAST (F3)
WG584 Lat	47²4'33.14057 ${ }^{\circ} \mathrm{N}$	To use the same coordinates as when the
WG584 Long	9³7'03.22003" E	receiver was last used as a reference.
WGS84 El1 Ht	474.2801 m	To use the coordinates of the current navigated position.
	a $\hat{\text { 亿 }}$	
CONT COORD	HERE	
Field	Description of Field	
Point ID	The point ID for the reference point. When setting the reference point for the setup, the selected point must be able to be viewed as WGS84 coordinates.	
Antenna Ht	The antenna height at the reference point.	

Step 4)
completing the setup

Field	Description of Field
Point ID	The point ID for the reference point.
Antenna Ht	The antenna height at the reference point.
Time at Point	The time from when the point is occupied until point occupation is stopped.
GDOP	The current GDOP of the computed position.

Press FNSH (F1) to stop occupation and store the reference point.

32

32.1

Description

Working with Stakeout

An Overview of the Program

Stakeout is a program used to place marks in the field at predetermined points. These predetermined points are the points to be staked. The points to be staked must exist in a job in the internal memory. The points may:

- already exist in a job on RX900.
- have been uploaded to a job on RX900 using LGO.
- have been uploaded from an ASCll file to a job on RX900.

A staked point can be manually occupied as a check.

Diagram

Stakeout mode

PO Current position
P1 Point to be staked
dl Stake out distance
d2 Height difference between current position and point to be staked
a Stake out direction

Points are staked in orthogonal mode.

Coordinate system

Point types

Height source

Points cannot be staked if the active coordinate system is different to that in which the points to be staked are stored. For example, the points to be staked are stored with local coordinates and the active coordinate system is WGS 1984.

It is possible to stake:

- Position only points.
- Height only points.
- Points with full sets of coordinates.

Heights can be taken into account from:

- the vertical component of a coordinate triplet.
- a Digital Terrain Model.
32.2

Access
A) starting the program

Starting the Program

Stakeout Job :	Default
Job	$:$

Coord System : coord sys name
Codelist : codelist name

CONT (F1)
To accept the screen entries and continue.
CONF (F2)
To configure the program.
DATA (F5)
To view, edit and delete points stored with the job.
CSYS (F6)
To select a different coordinate system.

Field	Description of Field
Stakeout Job	The job containing the points to be staked.
Job	The active job. Points which are occupied after staking out are stored in this job. The original points to be staked are not copied to this job.
Coord System	The coordinate system currently attached to the selected Job.
Codelist	No codes are stored in the selected Job.

Field	Description of Field Codes have already been stored in the selected Job. If codes had been copied from a System RAM codelist, then the name of the codelist is displayed. If codes have not been copied from a System RAM codelist but typed in manually, then the name of the active job is displayed.

B) selecting the task

| CONT (F1) | |
| :--- | :--- | :--- |
| To accept the screen entries and continue. | |
| CONT | Description Of Field |
| Stakeout Task | Points Only. The positions and heights of points in the selected
 Stakeout Job are staked out. No DTM file is used.
 - Points \& DTM. The positions of points in the selected Stakeout
 Job are staked out. Heights to be staked are taken from DTM Job. |

Field	Description Of Field - DTM only. Activates the stakeout of heights without positions. Heights relative to the selected DTM Job are staked out.		
DTM Job	-Available for Stakeout Task=Points \& DTM and Stakeout Task=DTM only. To select a DTM to be staked and to select the active DTM layer to be used. Heights are then staked out relative to the selected DTM. IF the stakeout is to stake points THEN to stake a DTM		select Stakeout Task=Points Only and press CONT (F1).
:---			

Description

Diagram
The diagram shows an example for stake out in orthogonal mode with Orientate: To North.

PO Current position
P1 Point to be staked
dl FORW or BACK
d2 RGHT or LEFT
d3 FILL or CUT

Staking the points

OCUPY (F1)

To start measuring the point being staked. The position mode icon changes to the static icon. (F1) changes to STOP. The difference between the current position and the point being staked is still displayed.
STOP (F1)
To end measuring the point being staked. When Auto STOP: Yes in CONFIGURE Point Occupation Settings, the measurement ends automatically as defined by the stop criteria. The position mode icon changes to the moving icon. (F1) changes to STORE. After ending the measurements, the differences between the measured point and the point to be staked are displayed.
STORE (F1)
To store the measured point. When Auto STORE: Yes in CONFIGURE Point Occupation Settings, the measured point is stored automatically. (F1) changes to OCUPY.

NEAR (F2)

To search Stakeout Job for the point nearest to the current position when the key is pressed. The point is selected as the point to be staked and is displayed in the first field on the screen. After staking and storing the nearest point, the next point suggested for staking out is the one which was suggested before the key was pressed.
Available when OCUPY (F1) is displayed.

REVRS (F3)

To reverse the graphical display top to bottom. A reversed graphical display can be used when the point to be staked lies behind the current position.

PAGE (F6)

To change to another page on the screen. SHIFT CONF (F2)

To configure the Stakeout application program. Available for OCUPY (F1) being displayed.

SHIFT QUIT (F6)

To exit Stakeout application program. Available for OCUPY (F1) being displayed.

Field	Description of Field
First field on the screen	The point ID of the point to be staked. Accesses STAKEOUT Data: Job Name where points are shown according to sort and filter settings and staked points are indicated by the staked out symbol.
hA	The default antenna height is suggested. The changed antenna height is used until the application program is exited.
FORW	The horizontal distance from the current position to the point to be staked in the direction of the orientation.
BACK	The horizontal distance from the current position to the point to be staked in the reverse direction of the orientation.
RGHT	Horizontal distance from the current position to the point to be staked orthogonal to the right of the orientation direction.

Field	Description of Field
LEFT	Horizontal distance from the current position to the point to be staked orthogonal to the left of the orientation direction.
CUT	The negative height difference from the height of the current posi- tion to the height of the point to be staked. To move down.
FILL	The positive height difference from the height of the current position to the height of the point to be staked. To move up.
D Ht	The design height, which is the orthometric height of the point to be staked, is displayed. If the orthometric height cannot be displayed, the local ellipsoidal height is displayed. If it is not possible to display the local ellipsoidal height, the WGS 1984 height is displayed. Changing the value for D Ht changes the values displayed for CUT and FILL.
3DCQ	Available for code and phase fixed solutions. The current 3D coordi- nate quality of the computed position.
PDOP	Available for autonomous solutions or if no solution is available. The current PDOP of the autonomous solution.

Description

Staking the Digital Terrain Model (DTM)

- With the Stakeout program a Digital Terrain Model can be staked. The heights of the current positions are compared against those of a selected DTM job. The height differences are calculated and displayed.
- Staking a DTM may be used for:
- staking out where the DTM represents the surface to be staked.
- quality control purposes where the DTM represents the final project surface.
- DTM jobs are created in LGO. DTM jobs are stored in the \DBX directory of the internal memory.

Diagram

GPS900_049

Pl Point to be staked
dl CUT or FILL
d2 Antenna height

Staking the digital terrain model

OCUPY (F1)

To start measuring the height. The position mode icon changes to the static icon. (F1) changes to STOP.
STOP (F1)
To end measuring the height. When Auto STOP: Yes in CONFIGURE Point Occupation Settings, the measurement ends automatically as defined by the stop criteria. The position mode icon changes to the moving icon. (F1) changes to STORE.

STORE (F1)

To store the measured point. When Auto STORE: Yes in CONFIGURE Point Occupation
Settings, the measured point is stored auto-
matically. (F1) changes to OCUPY.

PAGE (F6)

To change to another page on the screen. SHIFT CONF (F2)

To configure the Stakeout application program. Available for OCUPY (F1) being displayed.

SHIFT QUIT (F6)

To exit Stakeout application program. Available for OCUPY (F1) being displayed.

Field	Description of Field
First field on the screen	The point ID of the point to be staked.
hA	The default antenna height is suggested. The changed antenna height is used until the application program is exited.
CUT	The negative height differences from the current position to the equivalent point in the selected DTM job is calculated and displayed. To move down.
FILL	The positive height differences from the current position to the equivalent point in the selected DTM job is calculated and displayed. To move up.
D Ht	The design height, which is the height of the DTM is displayed. Changing the value for D Ht changes the values displayed for CUT and FILL.
3DCQ	Available for code and phase fixed solutions. The current 3D coordi- nate quality of the computed position.
PDOP	Available for autonomous solutions or if no solution is available. The current PDOP of the autonomous solution.

Description

Elements of the graphical display

Graphical display

Understanding the Stakeout Icons in MapView

A graphical display provides a guide to find the point to be staked out. The elements of the graphical display used within the Stakeout application program screens are explained in this chapter. Some of the elements depend on the selection for Orientate in STAKEOUT Configuration, General page. Other elements are commonly displayed.
The Map page provides an interactive display of the data.

If the antenna is too far away and the scale is $>1000 \mathrm{~m}$, the antenna is not shown and the point to be staked circle is grey.

For orthogonal stakeout

Standard graphical display

For scale 0.5 m

Reversed graphical display

For scale 0.5 m

Configuring orientation

Closest Point:

To Northy

CONT (F1)

To accept the screen entries and continue. PAGE (F6)

To change to another page on the screen. SHIFT ABOUT (F5)

To display information about the application program name, the version number, the date of the version, the copyright and the article number.

Field	Description of Field Orientate - The reference direction to be used to stakeout points. The stakeout elements and the graphical display shown in the Stakeout application program are based on this selection. To North. The North direction shown in the graphical display based on the active coordinate system. To Sun. The position of the sun calculated from the current posi- tion, the time and the date. - To Last Point. Timewise the last recorded point. If no points are yst staked, Orientate=To North is used for the first point to be staked.

Field	Description of Field
	- To Point(Stake). A point from Stakeout Job selected in STAKEOUT Stakeout Begin. - To Point(Store). A point from Job selected in STAKEOUT Stakeout Begin. - To Arrow. The direction of the orientation is from the current position to the point to be staked. The graphical display shows an arrow pointing in the direction of the point to be staked.
To	- To select the point to be used for orientation. Available for Orientate=To Point(Stake) and Orientate=To Point(Store).
Closest Point	- The order of the points suggested for staking out. - Yes. After staking and storing a point, the next point suggested for staking out is the point closest to the point which was staked. If there are many points in Stakeout Job, the search may take a few seconds. - No. After staking and storing one point, the next point suggested for staking out is the subsequent one in Stakeout Job.

$17: 52$	$\begin{array}{lll} =7 \text { M } \\ =7 & \text { 由晾 } \end{array}$
Configuration 区	
General Checks	
Pos Check	Yes犋
Pos Limit	0.0200 m CONT（F1）
Height Check Height Limit	To accept the screen entries and continue
	Yes速 PAGE（F6）
	0.0200 m （ ${ }^{\text {m }}$ change to another page on the screen．
Beep near Pt Dist from Pt	Yes $\mathrm{l}^{\text {b }}$ SHIFT ABOUT（F5）
	0.500 program name，the version number，the
	a $\hat{\bullet}$ date of the version，the copyright and the
CONT	PAGE article number
Field	Description of Field
Pos Check	－Yes or No．Allows a check to be made on the horizontal coordi－ nate difference between the manually occupied staked point and the point to be staked．If the defined Pos Limit is exceeded，the stakeout can be repeated，skipped or stored．
Pos Limit	－User input．Available for Pos Check＝Yes．Sets the maximum hori－ zontal coordinate difference which is accepted in the position check．
Height Check	－Yes or No．Allows a check to be made on the vertical difference between the manually occupied staked point and the point to be staked．If the defined Height Limit is exceeded，the stakeout can be repeated，skipped or stored．
Height Limit	－User input．Available for Height Check＝Yes．Sets the maximum vertical difference accepted in the height check．

Field	Description of Field
Beep near Pt	- Yes or No. The RX900 beeps when the horizontal radial distance from the current position to the point to be staked is equal to or less than defined in Dist from Pt.
Dist from Pt	-User input. Available for Beep near Pt=Yes. The horizontal radial distance from the current position to the point to be staked when a beep should be heard.

33

33.1

Access

Starting the program

Working with Survey

Starting the Program

$\frac{11: 41}{\text { SURVEY }}$		
Survey Begin		
Job	Defaultid CONT (F1)	
Coord System	WGS 1984	To accept the screen entries and continue. CONF (F2)
Codelist	<None>业	To configure SmartCodes and auto points measurements.
		DATA (F5) To view, edit and delete points stored with the job.
	a $\widehat{1}$	CSYS (F6)
CONT CONF	DATA CSYS	To select a different coordinate system.
Field	Description of Field	
Job	The active job.	
Coord System	The coordinate system	currently attached to the selected Job.
Codelist	Choicelist. No codes	e stored in the selected Job.

Field	Description of Field
Output. Codes have already been stored in the selected Job. If codes	
had been copied from a System RAM codelist, then the name of the	
codelist is displayed. If codes have not been copied from a System	
RAM codelist but typed in manually, then the name of the active job	
is displayed.	

The next step

IF the survey is	THEN
to survey points	press CONT (F1) and proceed to the Survey page.
to survey auto points	press CONT (F1) and proceed to the Auto page.

The arrow at the real-time device and real-time status icon flashes when real-time messages are being received.

Fixing ambiguity begins. The current position status is indicated by the position status icon. When working with code only corrections, an ambiguity solution is not attempted.

The position mode icon is the moving icon. This indicates that the antenna can be moved around and that no static observations are being recorded.

Surveying points

Surveying the Points

Field	Description of Field
3D CQ	The current 3D coordinate quality of the computed position.

Surveying points using SmartCodes

OCUPY (F1)

To start measuring a point. For Measure Point: Yes in SURVEY Survey: Job name, SCode page, tapping the code box with the supplied stylus automatically starts measuring the point. The highlighted code is stored with the point.
STOP (F1)
To end measuring a point when enough data is collected.

STORE (F1)

To store the point information.

CODES (F3)

To select a code from MANAGE Select Code panel and to assign it to the highlighted code box.
PAGE (F6)
To change to another page on the screen. SHIFT CONF (F2)

To configure SmartCodes and auto points measurements.

Field	Description of Field
Code Block	List of up to nine code boxes with assigned codes.

Description

Surveying auto points

Auto points is used to automatically log points at a specific rate. Auto points are used in real-time moving applications to document the track which was walked or driven along. Auto points are logged between starting and stopping logging of auto points form one chain. A new chain is formed each time logging of auto points is started. Auto points can be collected in the Survey program.

Before logging of auto points has started, the default page appears as shown:

START (F1)

To start logging of auto points and offset points if configured or, for Log By: User Decides, to start the chain to which the auto points should be assigned. The first auto point is stored.
STOP (F1)
To end recording of auto points and offset points if configured or, for Log By: User Decides, to end the chain to which the auto points are assigned.

OCUPY (F3)

Available for STOP (F1). To store an auto point at any time.

PAGE (F6)

To change to another page on the screen.

SHIFT CONF (F2)

To configure auto points.

SHIFT QUIT (F6)

To exit the Survey application program.

Field	Description of Field
Auto Pt ID	The identifier for auto points. The ID can be changed. To start a new sequence of point ID's type over the point ID.
Code (Auto)	The thematical code for the auto point. Choicelist. Available for Thematc Codes: With Codelist. The attributes are shown as output, input or choicelist fields depending on their definition. User input. Available for Thematc Codes: Without Codelist. Codes can be typed in but not selected from a codelist. A check is performed to see if a code of this name already exists in the job. If so, the according attributes are shown.
Code Desc	The description of the code. Msd Auto PtsAvailable after pressing START (F1). The number of auto points logged since START (F1) has been pressed.
3D CQ	The current 3D coordinate quality of the computed position.

Configuring Smart-

Codes

Configuring the Program - SmartCodes

Field	Description of Field
Measure Point	- Yes or No. If one of the code boxes is tapped in SURVEY Survey: Job name, SCode page then that code is selected and the point is measured for Measure Point: Yes.
String Attrib	- Choicelist. Available for Show Codes: All Codes. When this field is active, surveyed points that have the same code attached are strung to one line.
Method	- Method by which subsequent code box is selected after a point is stored. - Not used. Direction and No. Elements are invisible and the number of codes boxes shown in SURVEY Survey: Job name, SCode page is nine. - Zig-Zag. Each new code block is selected at the same end as where the previous code block finished. - Same direction. Each new code block is selected at the same end as where the previous code block started.
Direction	- The way of using the code boxes. This influences in which order the code boxes will be applied. - Forward. The code boxes are used in the same way as defined in SURVEY Survey: Job name, SCode page. - Backward. The code boxes are used in the reverse way as defined in SURVEY Survey: Job name, SCode page.
No. Elements	- 1, 2, 3, 4, 5, 6, 7, $\mathbf{8}$ or $\mathbf{9}$. Number of code boxes shown in SURVEY Survey: Job name, SCode page.

Setting
 the logging method

Configuring the Program - Setting the Logging Method

CONT (F1)

To accept the screen entries and continue. DMASK (F3)

To configure what is viewed in the Auto page in the Survey application program.

Field	Description of Field Log By -Time. Auto points are logged according to a time interval. The time interval is independent from the update interval for the posi- tion on the screen. Distance. The difference in distance from the last stored auto point, which must be reached before the next auto point is logged. The auto point is logged with the next available computed position. - Stop \&o. An auto point is stored when the position of the antenna does not move more than the distance configured in Stop Position within the Stop Time.

Field	Description of Field
	- Once a point has been stored, the position from the point just stored must change more than the distance configured in Stop Position before the routine starts again.
Log Every	- User input. For Log By=Distance. The difference in distance before the next auto point is logged. - For Log By=Time from 1.0s to 60.0s. The time interval before the next auto point is logged.
Stop Position	- Available for Log By=Stop ε Go. The maximum distance within which the position is considered stationary.
Stop Time	- Available for Log By=Stop $\& G 0$. The time while the position must be stationary until an auto point is stored.

Setting the display mask

CONT (F1)

To accept the screen entries and continue. CLEAR (F4)

To clear all the fields except the first field. DEFLT (F5)

To recall the default settings.

Field	Description of Field
Fixed Lines	- From 0 to 5. Defines how many lines do not scroll in the screen.
1st Line to 16th Line	- For each line one of the following options can be selected. - Attrib (free) 01-04. Output field for attributes for free codes. - Attrib 01-03. Input field for attributes for codes. - Code (auto). Choicelist or input field for codes. - Code (free). Output field for free codes. - Code Desc. Output field for description of codes. - Code Desc (free). Output field for description of free codes. - Code Type. Output field for the type of code.

Description of Field

- GDOP. Output field for current GDOP of the computed position.
- HDOP. Output field for current HDOP of the computed position.
- Line Space Full. Insert full line space.
- Line Space Half. Insert half line space.
- Moving Ant Ht. Input field for antenna height for moving observations.
- Msd Auto Points. Output field for the number of auto points logged after pressing START (F1). Counting starts again from 0 when START (F1) pressed again.
- PDOP. Output field for current PDOP of the computed position.
- Quality 1D. Output field for current height coordinate quality of computed position.
- Quality 2D. Output field for current 2D coordinate quality of computed position.
- Quality 3D. Output field for current 3D coordinate quality of computed position.
- VDOP. Output field for current VDOP of the computed position.

Appendix A

Menu Tree

Menu tree

MAIN MENU
-- STAKEOUT
-- PROGRAMS.

- MANAGE...
-- JOBS
-- CODELISTS
-- COORD SYSTEMS
CONVERT...
EXP DATA
-- EXPORT ASCII
-- DXF EXPORT
IMP DATA
IMPORT ASCII/GSI
-- DXF IMPORT
COPY PTS
|-- CONFIG...
-- SURVEY CONFIG...
-- DISPLAY CONFIG
-- CODE CONFIG
-- QUALITY
-- PT OCCUPATION
INSTR. CONFIG...
-- ANTENNA
-- SAT. CONFIG
-- TIME ZONE
-- INSTRUMENT ID

GENERAL CONFIG...
-- HOTKEYS \& USER
-- UNITS \& FORMATS

- LANGUAGE
-- DISPLAY, BEEPS
RADIO CONFIG

I-- TOOLS...
-- FORMAT
-- TRANSFER...
-- CODELISTS
COORDINATE SYSTEMS
-- GEOID FIELD FILES
CSCS FIELD FILES
FORMAT FILES
SYSTEM RAM CONTENTS
-- ANTENNA RECORDS
SYSTEM...
-- APPLICATION PROGRAMS
-- SYSTEM LANGUAGES
-- INSTRUMENT FIRMWARE
CALC
VIEW
LICENCE

Appendix B

Memory Types

Types of memory available

Internal memory:

- Jobs
- Points
- Codes
- Coordinate systems
- ASCll output files
- Logfiles
- ASCII files to be imported
- CSCS field files
- Geoid field files

The information is managed in the job database DB-X and in the measurement database.

Application programs memory, 8 MB

- System language
- Font files
- Application programs
- Language files
- Font files

System RAM, 1 MB

- Codelists
- Coordinate systems
- Antenna files
- Format files
- CSCS models/CSCS field files
- Geoid models/Geoid field files
- Almanac

Appendix C

Description
Directory structure

Directory Structure of the Memory Device

In the internal memory, files are stored in certain directories.

- Codelists, various files
- Configuration files (filename.xfg)
- Format files (filename.frt)
- ASCII files for import/export to/from job (filename.*)
- DXF files for import/export to/from job (filename.dxf)
- Logfiles created from application programs
- Almanac file (Almanac.sys)
- CSCS field files (filename.csc)
- Geoid field files (filename.gem)
- Job files, various files
- Coordinate system file (Trfset.dat)
- Antenna file (List.ant)

\|-- GSI	- GSI files (filename.gsi)
- SYSTEM	- ASCII files for export from job (filename.*)
	- Application program files (filename.a*)
	- Firmware files (filename.fw)
	- Language files (filename.s*)
	- Licence file (filename.key)
	- System files (System.ram)

Appendix D

D. 1

Description

Pin assignments for 8 pin LEMO-1

Pin Assignments and Sockets

RX900

Some applications require knowledge of the pin assignments for the RX900 port. In this chapter, the pin assignments and socket for the port of the RX900 are explained.

Pin	Name	Description	Direction
1	USB_D+	USB data line	In or out
2	USB_D-	USB data line	In or out
3	GND	Signal ground	-
4	RxD	RS232, receive data	In
5	TxD	RS232, transmit data	Out
6	ID	Identification pin	In or out
7	PWR	Power input, 5 -28 V	In
8	GPI	RS232, general purpose signal	In

8 pin LEMO-1:
LEMO-1, 8 pin, LEMO HMI.1B.308.CLNP

D. 2

Description

Port at the ATX900 GG

a) 8 pin LEMO-1 to connect cable to RX900

Pin assignments for

 8 pin LEMO-1| Pin | Name | Description | Direction |
| :--- | :--- | :--- | :--- |
| 1 | USB_D+ | USB data line | In or out |
| 2 | USB_D- | USB data line | In or out |
| 3 | GND | Signal ground | - |
| 4 | RxD | RS232, receive data | In |
| 5 | TxD | RS232, transmit data | Out |
| 6 | ID | Identification pin | In or out |
| 7 | PWR | Power input, 5 -28 V | In |
| 8 | ATX_ON | ATX on control signal, RS232 levels | In |

Appendix E

Description

Cables connecting instruments, devices or accessories

Cables

Some applications require the connection of instruments, devices or accessories to the RX900. In this chapter, the required cables and their use are listed.

The table shows in alphabetical order which instruments, devices or accessories can be connected using cables. Refer to paragraph "Cables and product names" for a full description of these cables.

From	To	Cables
GEB171	RX900	\bullet GEV97
	ATX900 GG	\bullet GEV215
	ATX900 GG and GFU	\bullet GEV205
Power supply for GPS900, 12 V DC	ATX900 GG and RX900	\bullet GEV215
RS232 9 pin on PC	RX900	\bullet GEV162
RX900	ATX900 GG	\bullet GEV173
USB on PC	RX900	\bullet GEV161

The product names of the cables in the above table are explained in detail below in ascending order.

Name	Description
GEV97	Cable 1.8 m, GX power cable
GEV161	Cable 2.8 m, data transfer GX RX900 to USB
GEV162	Cable 2.8 m, data transfer GX RX to RS232
GEV173	Cable 1.2 m, ATX900 GG to RX900

Name	Description
GEV205	Y-cable 1.8 m , ATX900 GG to GEB171 and GFU, for GPS900 reference station
GEV215	Y-cable, ATX900 GG to RX900 and GEB171

Index

A
ADJ, class 29
Almanac file, directory 283
Almanac.sys 283
Angle, display format 117
Antenna
Set default height 93
Antenna file, directory 283
aNUM 115
Application program file, directory 284
Application programs memory 282
Formating 137
Arc, reference 223
Arrow, orientate to
Reference Line 240
ASCII
Export format 82
Import format 87
ASCII file
Directory for import/export to/from job 283
ASCII filesDirectory 284
Attribute
Description 50
Type in new 44
Attribute type 51
Attribute value region 51
Attribute value type 51
ATX900 GG firmware, upload 141
Azimuth/bearing fields 119
B
Battery, status 169
Bearing/azimuth fields 119
c
Cables 288
Cassini projection 70
Class 29
Classification of points, hierarchy 29
Code
Create 44
Description 48
Edit 44
Free 48, 49
Point 49
SmartCodes 269, 273
Thematical 48
Code type 44, 49
Codelist
Description 52
Directory 283
Elements 52
Job 53
System RAM 53
CodesManage42
Manage job codes 46
COGO
Arc Calculations 177
Intersections 176
176 Inverse 176
Configuration file, directory 283
Contrast, screen 114
Control points 197
Coordinate quality 34
Coordinate system
56
Active
Create 59
Default 56
Edit 198
Recall deleted system 58
Turn into user defined default 58
Coordinate system file, directory 283
Coordinate system management, access 57
Coordinate triplet 29
Country Specific Coordinate System models 78
CQ 34
Create
Code 44
Codelist 41
Coordinate system 59
CSCS models 76
Ellipsoid 67
Geoid model 75
Point 18
Projection 71
Transformation 63
csc file 76
CSCS field file 76
Directory 283
CSCS model 76
Create 76
Description 78
Types 78
CTRL, class 29
Current position, status 167
Cut off angle 112
D
Data 16
Data export Directory 83
Data format, Leica, RTCM, CMR/CMR+ 109
Data management Access 16
Database 282
DB-X 282
Default, recall
Auto points, display mask settings 277
Coordinate system 58
Display mask settings 99
Ellipsoid 66
Projection 69
Delete Job 14
Code 43 21
Point
Point
Codelist 40
Coordinate system 57
Ellipsoid 65
Format file
Data export 84
From Data Log 26
Geoid model74
Job 11
Matched points 202
Point 17
Projection 68
Transformation 61
Delete point from Resection 220
Directory structure of memory device 283
Distribution
Residuals throughout transformation area 216
DMASK 273, 27
Double Stereographic projection 70
DTM layer, select 252
DXF 88
Export format 82
DXF file
Directory for import/export to/from job 283
E
EditCodelist41
Coordinate system 198
Elevation mask 112
Ellipsoid
Create 67
Delete 65
Edit 67
Recall deleted default 66
Ellipsoid management, access 65
Ellipsoidal height 77
Ellipsoids 65
EST, class 30
Exceeded limit
Coordinate quality 97
Height
Reference Line 241, 264
Position
Reference Line 241, 264
Expiry date, software maintenance 171
Export format 82
F
Field file
CSCS 76
Geoid 72
FILT 17
Filter symbol 28
Firmware file, directory 284
Firmware, version 171
Format
Export 82
Import 87
Format file8
Directory 283
Export ASCII
Export ASCII 82 82
Free code 48, 49
Delete 26Ggem file72
Geoid field file 72
Directory 283
Geoid model 72
Create from internal memory 75
Delete 74
Description 77
Management, access 73
View 74
Geoid separation 77
Geoid, height above 77
Graph, showing satellites 161
GSI file, directory 284
GSII6 87
GSI8 87
H
Heating, screen 114
Height
Ellipsoidal 77
Geoid 77
Levelled 77
Mean sea level 77
Orthometric 77
Height mode 64
Hot keys
Description 157
I
Identification number 104
Illumination
Keyboard 114
Screen 113
Import, format 87
Increasing NE, SE, SW, NW 119
Instrument source 34
J
Job
Active 12
Create 13
Default 11
Edit 14
Job codelist 53
Job file, directory 283
K
Keyboard, illumination 114

L
Lambert 1 Parallel projection .. 70
Lambert 2 Parallel projection ... 70
Language file, directory .. 284
Last point, orientate to
Reference Line ... 239
Layer, DTM, select ... 252
Leica data format ... 109
Levelled height .. 77
LGO
Creation
Attributes ... 51
Codes .. 49
CSCS field files ... 76
DTM jobs .. 257
Geoid field files .. 72
Download
Coordinate systems .. 54
Jobs .. 11
Upload
Codelist to RX900 ... 38
Coordinate systems .. 54
Jobs ... 11
Licence file, directory .. 284
Line
Orientate to, Reference Line 240
Reference ... 223
Line style, coding ... 44
Linework .. 44
LocalDate106
Time 106
Logfile
Directory 283
MMapView
Access 148
Configure 149
Mode 147
North arrow 154
Overview 147
Point symbols 156
Point with focus, symbol 154
Scale bar 154
Screen area 154
Softkeys 153
Symbol rover 154
Toolbar 155
Symbol 154
MATCH 202, 220
Match points
Determine Coordinate System 202
Mean sea level, height 77
MEAS, class 29
Measure to
Arc 226
Line 226
Memory
Directory structure 283
Format 137
Status 169
Memory types 282
Menu tree 279
Mercator projection 69
Mode, Calculator 126
Molodensky-Badekas 64
N
NAV, class 30
Next available point ID 268
North, orientate to
Reference Line 239
Number of satellites, used in solution 163
0
Oblique Mercator projection 69
Onestep transformation 193
Orientate
Reference Line 239
Orthometric height 77
OWI commands, status 171
P
Pin assignment 285
Point
271
271
Auto
Auto 18
Delete 17, 26
Edit 21
Orientate to
Reference Line 240
Point code 49
Point ID, next available 268
Point symbols, MapView 156
Points
Sorting 27
Polar Stereographic projection 70
ppm, transformation results 205
PRN 160
PROGS 137
Projection
Cassini 70
Create 71
Delete 68
Double Stereographic 70
Edit 71
Lambert 1 Parallel 70
Lambert 2 Parallel 70
Mercator 69
Oblique Mercator 69
Polar Stereographic 70
Recall deleted default 69
RSO 70
Transverse Mercator 69
UTM 69
Projection management, access 68
Projections 68
PZ90 140
Q
Quadrant 119
R
Real-time, status 163
Recall
ASCII import settings 89
Default
Auto points, display mask settings 277
Display mask settings 99
Deleted default
58
58
Coordinate system
Coordinate system
Ellipsoid 66
Projection 69
Rectified Skewed Orthomorphic projection 70
REF, class 29
Residual
Distribution throughout transformation area 216
RMS 36
Root Mean Square 36
Rotate, MapView 151
RPN mode 126
RSO projection 70
RX900 115
Control key beep113
S/N 161

S
 S

Sat SystemGPS \& GLONASS111
GPS only 111
Satellites
Number used in solution 163
Settings 111
Status 160
Scale, transformation results 205
Screen
Contrast 114
Heating 114
Illumination 113
Select DTM layer 252
Serial number 171
SET-D
Coordinate system 58
Ellipsoid 66
Projection 69
Transformation 62
Signal to noise ratio 161
Single Point Position 156
Skyplot 161
Slot number 160
SmartCodes 273
Configuring 273
Surveying points 269
Socket 285
Soldner Cassini projection 70
Sort settings, define 17
Source 31
SPP 156
Stake to156
Arc 226
Line
193
Description63
dit 193, 197
Requirements
61
Transformation management, access
64
Transformation model
193
Transformation parameters61
Standard deviation 35 Transverse Mercator projection 69
Standard mode 126 Triplet 29
STAT 159 Type in new attribute 44
Status
OWI commands 171
U
Sub class 30
Universal Transverse Mercator projection 69
Sun, orientate to Update coordinate system 198239
UTM projection 69
Symbols, for points in MapView 156
v
System file, directory 284
System information, status 171
System language
Upload 141
System RAM 282
Codelist 53
SYSTM 137
T
Text 115
Versions of system firmware 171
View
Geoid model 74
Points and free codes stored in job 17
w
WGS 1984 56
Z
Thematical code 48
Zoom 153
Transformation
63
63
Create
Create 61
Delete

Total Quality Management - Our commitment to total customer satisfaction.

Leica Geosystems AG, Heerbrugg, Switzerland, has been certified as being equipped with a quality system which meets the International Standards of Quality Management and Quality Systems (ISO standard 9001) and Environmental Management ISO 9001 / ISO 14001 Systems (ISO standard 14001)

Ask your local Leica Geosystems dealer for more information about our TQM program.

Leica Geosystems AG

Heinrich-Wild-Strasse
CH-9435 Heerbrugg
Switzerland

- when it has to be right

Geosystems

